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Abstract

Many human-facing algorithms—such as those powering recommender systems or hiring
decision aids—are trained on data provided by their users. A common assumption of these
algorithms is that user behavior is exogenous: that is, a user would react to a given prompt (e.g.,
a recommendation or hiring suggestion) in the same way no matter what algorithm generated
it. For example, latent factor models in recommender systems posit that a user’s interest in an
item depends on the features of the user and of the item, but not of the model itself. In practice,
however, user behavior is not exogenous—users are strategic. Recent studies document, for
example, TikTok users changing their scrolling behavior after learning that TikTok uses it to
curate their feed, and Uber drivers changing how they accept and cancel rides in response to
changes in Uber’s algorithm.

Our work studies the implications of strategization by modeling the interactions between a
user and their data-driven platform as a repeated, two-player game. We leverage results from
misspecified learning to characterize the effect of strategization on data-driven algorithms. We
show that although strategization can actually help platforms in the short term, it ultimately
corrupts platforms’ data and hurts their ability to make counterfactual decisions. We connect
this phenomenon to user trust, and show that designing trustworthy algorithms can go hand
in hand with accurate estimation. We provide a formalization of trustworthiness that inspires
potential interventions.

1 Introduction

In the age of personalization, data-driven platforms have become increasingly reliant on data
provided by their users. Platforms like Facebook, Amazon, and Uber tailor their services to each
user based on the user’s interaction history. Even data-driven tools in medicine and hiring utilize
previous interactions in order to fine-tune and improve their results.

Traditionally, platforms make a key assumption when processing user data: that user behavior
is exogeneous, i.e., how a user behaves depends on the user but not on the platform’s algorithm. In
practice, however, users are not blind to how their platforms operate. Rather, users often adapt
their behavior—or strategize—based on their perception of how the platform works. For instance,
a Facebook user might not click on a post not becauase they find it uninteresting, but because
they believe the algorithm will over-recommend similar content in the future if they do click. Or
an Uber driver may cancel low-paying rides that they would normally accept because they have
learned that Uber’s algorithm does not penalize them for excessive cancelations [Mar20].

While it is convenient to assume that user behavior is exogeneous, it can mislead the plat-
form. When users strategize, it becomes difficult to discern whether a user action (e.g., skipping
a video on YouTube) is exogenous (the user would skip this video, regardless of YouTube’s algo-
rithm) or endogenous (the user skips because they believe watching this video will trigger undesir-
able recommendations under YouTube’s algorithm). As a result, the platform’s data is no longer
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generalizable—data gathered under one algorithm cannot be used to make reliable predictions
about outcomes under a different algorithm.

Aware that users adapt their behavior to their platform’s algorithm, some platforms have be-
gun taking actions that lead to a cat-and-mouse game between the platform and user. For instance,
Facebook may notice that users strategize by selectively clicking the “like” button and begin track-
ing how quickly users scroll down their feeds, using the dwell time on each post as proxies for
user interest. Upon learning that Facebook is tracking their dwell time, users may begin strategiz-
ing how they scroll, prompting Facebook to respond yet again and resulting in a cycle that only
serves to erode the trust between a user and their platform.

It is natural to ask: is this outcome inevitable? Is out-maneuvering users the only way for plat-
forms to obtain high-quality data? Not necessarily. It turns out that trustworthy algorithm design
plays a key role. When an algorithm is trustworthy, users do not feel compelled to strategize—
they provide data that, for all intents and purposes, looks exogenous. We formalize this intuition,
calling a platform κ-trustworthy when their choice of algorithm does not induce strategization and
ensures users receive at least κ utility on average. Intuitively, a platform is trustworthy when a
user believes that the platform looks out for their interests along the same axis that would induce
the user to strategize. We connect this formalization to the existing literature on trustworthiness,
comparing it to definitions that arise in political science and law. Using this framework, we show
that trustworthy design can mitigate the effects of strategization on a platform, to the benefit of
both the platform and user.

1.1 Summary of contributions

We begin by modeling the interactions between a user and their data-driven platform as a re-
peated, two-player game (Section 3). Under our model, there are two agents: a user and their
platform. At each time step, the platform puts forth a proposition (e.g., a prediction or a recom-
mendation), the user responds with a behavior (e.g., agreeing with the prediction or ignoring the
recommendation), and each party receives a payoff based on their action. The platform’s goal is
to generate high-payoff propositions by developing a good estimate of the user’s behavioral ten-
dencies from repeated interactions with the user. In our model, the platform “moves first” in that
it declares how it generates propositions, after which the user “moves second” by choosing how
they respond to propositions (akin to a Stackelberg game). Importantly, this model allows users
to observe and adapt to the platform’s algorithm.

We then define what it means for a user to be strategic in Section 4. We call a user “naive” if
they adopt a best-response strategy, i.e., at every time step, they behave as though they are only
interacting with the platform once. In contrast, we call a user “strategic” if they anticipate how
their next action may affect the platform’s future propositions and, in turn, the user’s long-term
payoff. That is, the strategic user understands that their actions can affect the platform’s long-
term behavior and adapt accordingly. In order to study the long-term behavior of the two-player
system, we utilize the notion of a globally stable set [FII20]. Typically, characterizing how users plan
ahead involves solving a difficult optimization over a discount reward function. However, using
the globally stable set allows us to bypass this calculation by examining the system’s behavior at
equilibrium.

We show in Section 6 that user strategization can both help and hurt the platform. We first
show that strategization can improve the platform’s payoff (as long as the platform does not change
its algorithm). Intuitively, if the user’s and platform’s payoffs are sufficiently aligned, then strate-
gization can help overcome deficiencies in the algorithm. We then show that, although strate-
gization can benefit the platform when its algorithm is fixed, it can distort the data that the platform
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collects and mislead the platform. We first demonstrate that, if the platform collects data when a user
is strategic, its estimate of how it will perform under a new algorithm can be arbitrarily poor. We
further show that, when a user is strategic, expanding the hypothesis class (or model family) that
the platform uses to estimate user behavior can lower the platform’s payoff, even if everything
else is held fixed. This finding is counterintuitive as expanding one’s hypothesis class typically
results in better estimation. Although our negative results focus on the platform’s ability to es-
timate its payoff, they extend to other estimation tasks—the takeaway is that strategization can
distort the data that the platform may use for a variety of tasks. We then show that these difficulties
disappear when the user is not strategic, i.e., when the user does not plan ahead, which suggests that
platforms should design algorithms that do not incentivize users to strategize.

In the face of user strategization, platforms are left with a few options. They could simply use
the collected data and risk drawing incorrect inferences. They could post-process the data, but
“correcting” the data by removing the effect of strategization is extremely challenging in complex
settings because the user can strategize for many different reasons and along many different axes.
Alternatively, platforms could “correct” for strategic behavior by gathering more data. In Section
7, we discuss when and how these approaches fall short.

We then discuss how another approach—designing trustworthy algorithms—can improve
user and platform outcomes. Formally, we define a κ-trustworthy algorithm as one that (i) does
not incentivize users to strategize and (ii) guarantees that the user’s payoff is at least κ ⩾ 0. We
connect this definition to existing sociological notions of trust, e.g., trust as “encapsulated inter-
est” [Har06]. We conclude by enumerating three reasons users strategize and two interventions
for trustworthy design: offering multiple algorithms and providing feedback mechanisms.

2 Related work

Our work draws inspiration from extensive lines of work spanning computer science, economics,
game theory, and the social sciences. We outline a few of the most related areas to our work below.

Endogenous learning. One of the key aspects of our model is endogeneity on the side of the
platform, i.e., the platform’s actions affect the data it collects. There is a vast literature in both
economics and computer science that studies endogenous learning, some of which we heavily
rely on in this work.

Our work draws from a long line of work at the intersection of economics and game theory
that explores the dynamics of endogenous misspecified learning. Although we do not explicitly rely
on it here, the Berk-Nash equilibrium concept [EP16] provides a basis for much of this work. The
concept was later refined, expanded, and improved upon in several directions [FRS17; FLS21a;
Boh16; BH21; FII20]. In this work, we rely most heavily on the results of Frick et al. [FII20] due to
their generality, but our results are portable in the sense that new ways of characterizing globally
stable beliefs will allow for even sharper results in our setting.

There are also many related equilibrium concepts in the Economics literature that we do not
explore in this work, such as self-confirming equlibrium [FL93] and subjective equilbrium [KL93;
KL95]. Relating these models (and others) to our setting is an interesting question for future work.

Several works in the computer science literature also study misspecified learning. Of these,
the most related is the work of Perdomo et al. [Per+20] which introduces the idea of performative
prediction. The performative prediction setup mirrors that of supervised learning, except that the
learner’s current parameter estimate θ affects the data distribution Dθ . Our model can be viewed
as an instance of performative prediction (which in turn, can be viewed as an instance of rein-
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forcement learning [BHK22]) that focuses on a specific kind of performativity induced by users
adapting to their platforms.

Strategic classification and Stackelberg games. Strategic classification [Har+16] is a two-player
game in which one player (the decision-maker) deploys a machine learning algorithm, and the
other player (the decision subject) strategically reports their features to attain a favorable decision.
Strategic classification also features endogenous learning, and is a special case of the performative
prediction setup mentioned above. Strategic classification has been the subject of a deluge of
recent work in computer science [BKS12; Har+16; Don+18; Gha+21; Zrn+21]. Broadly, our model
differs from one of strategic classification in that (a) we restrict the platform to a specific learning
algorithm; (b) users have their own utility functions that they can optimize arbitrarily, and are
not bound to small perturbations of some “ground-truth” features; (c) users can be myopic or
non-myopic in how they interact with the platform.

Prior works have studied deviations from these assumptions. For (a), Zrnic et al. [Zrn+21]
study the case where rather than reacting instantaneously, the decision subject is learning at the
same time as the the decision-maker. Closer to our work, Levanon and Rosenfeld [LR22] intro-
duce generalized strategic classification, where the decision subject has a utility function that can
be more aligned with that of the platform. Finally, Haghtalab et al. [Hag+22] study Stackelberg
games (which generalize strategic classification) with non-myopic agents (i.e., where agents seek to
optimimize their long-term, rather than immediate, payoff). As previously discussed, our model
differs from theirs in that in our case users optimize their expected limiting payoff, which, and so
delaying user input has no bearing on the game dynamics.

User strategization on recommender systems. There are several related lines of work to ours
that concern user strategization on recommender systems specifically. One line of work studies
the ways in which users try to influence (and succeed in influencing) their recommendations on
popular platforms [SVM22; KL23; SHS22]. Closer to our work are theoretical models of user
strategization on recommender platforms [CIM22; HHP23], where [CIM22] is an earlier version
of this work. Compared to the latter of these works, we propose a model that (a) extends more
generally to data-driven platforms; (b) allows us to study the causes and effects of strategization
on the platform and its ability to make counterfactual inferences; and (c) connects strategization
back to trustworthiness of the platform.

Another related work is that of Kleinberg et al. [KMR22], who study a model of inconsistent
preferences under which users have a “myopic” system 1 that consumes addictive content and a
“non-myopic” system 2 that considers the value of content. Although we also study myopic and
non-myopic users, we use these terms in way that is subtly different from [KMR22], and their
focus (inconsistent preferences) is neither necessary nor sufficient for strategization to emerge.
Additionally, strategization concerns users’ response to their platforms’ algorithm, whereas in
[KMR22] the platform’s algorithm is fixed.

Multi-agent learning and games. There are also many lines of work on multi-agent learning,
including multi-agent reinforcement learning (see [ZYB21; Tan93; BBD08] and their references),
multi-agent Bayesian learning (e.g., [WAO20; WAO21]), and inverse reinforcement learning (par-
ticularly its cooperative [Had+16] and adversarial [YSE19] variants). All of these models capture
agents learning and interacting with each other at varying levels of generality. Here, we focus on a
particular instantiation of such setups where two agents interact in a very specific way, mirroring
the interaction between a user and a data-driven platform. Our interests are also more specifically
in studying the causes and effects of strategic behavior in this setup.
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Another related work studies repeated alternating two-player games [Rot+10] and considers
the complexity of computing equilibria in such games. In our work, we avoid having to compute
such equilibria by assuming that the platform follows a fixed Bayesian updating strategy.

Mechanism design and incentive-compatible auctions. Our notion of “trustworthiness” from
Section 7.1 is highly related to the idea of incentive-compatibility in mechanism design. There is a
rich line of work in econometrics on designing incentive-compatible methods for repeated games
in general (see, e.g., [MS06; BM93; KL93]), and more specifically for repeated auctions [Den+21;
Abe+19; Ned+22; ARS13; KN19]. In the latter, a long line of work stems from the tight connections
between incentive-compatibility and differential privacy [MT07; NST12].

Human-AI collaboration. Finally, our work contributes to a growing body of work on Human-
AI collaboration [Wan+19; Wan+20; Moz+22] and teaming [Zha+21; Ban+19], which both study
primarily collaborative interactions between AI systems and their users. In particular, one can
view our observations about conditions for strategization (and corresponding recommendations
about trustworthy algorithm design) in Section 7.2 as principles for human-AI collaboration in the
case where the AI and the human are not entirely aligned.

Within Human-AI collaboration, one line of work in particular isolates trust as a building block
of successful interaction (see, e.g., [OY20; HHC23; Eze+19; Bao+21] and references therein). Our
work supports the high-level idea that designing systems with trust in mind is important, but we
explore a slightly different notion of trust than what is typically considered. In particular, in our
case trustworthiness dictates whether a user will maximize their immediate utility at each step of
a game. By comparison, human-AI collaboration usually explores trust to the end of getting users
to use AI systems in the first place (or comfortably delegate complext tasks to AI systems).

3 Model

In this section, we present our game-theoretic model of the interactions between a user and their
data-driven platform. At its core, the model comprises a repeated, two-player game. At every
time step, the platform generates propositions (e.g., recommendations). The user then responds to
these propositions (e.g., chooses whether to engage with a recommendation) with behaviors.

A key feature of our model is that there is no “ground-truth” user behavior. In particular,
the way that the user responds to propositions may depend on how the platform generates them.
Our model therefore departs from earlier works that assume a user’s behaviors are drawn from a
single fixed, unknown distribution.

Since in this work we are interested in how users adapt to their platforms, we study the setting
where the platform first declares the strategy it will use to generate propositions. The user then
decides on how they wish to behave, with full knowledge of the platform’s intended strategy. 1

3.1 Setup

We model the interactions between a user and their platform as a two-player game. Formally, for
some d1, d2 > 0, let Z ⊂ Rd1 and B ⊂ Rd2 denote the action spaces of the platform and user,
respectively, where we assume that B is finite. Then, at every time step t = 0, 1, 2, . . .,

1While full user knowledge is a strong assumption, the effects we discuss here will only be exacerbated when users
have an imperfect model of the platform. We leave studying this case to future work.
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Figure 1: Illustration of the setup described in Section 3. (Left) At each time step t, the platform
issues propositions Zt, and the user responds with behaviors Bt. The user’s actions are determined
by their strategy q : Z → ∆(B), and the platform’s are determined by the algorithm p and the
hypothesis class Q̂. (Right) The platform’s actions at time t depend on its belief µt. Here, µt is a
distribution (i.e., set of weights) over Q̂ such that µt(q̂i) denotes the probability that the platform
assigns to q = q̂i at time t.

1. The platform generates propositions Zt ∈ Z .

2. The user responds with behavior Bt ∈ B, drawn from the conditional distribution q(·|Zt).

3. The platform and user collect payoffs V(Zt, Bt) and U(Zt, Bt), respectively.

This setup is given on the left side of Figure 1. We use the shorthand q : Z → ∆(B) to denote
the set of conditional distributions {q(·|Z) : Z ∈ Z}. the user’s strategy, i.e., a mapping from
propositions Z to behavior distributions q(·|Z) for all Z ∈ Z . Throughout this work, ∆(X) denotes
the simplex over a probability space X. Furthermore, we assume that the payoffs V and U as well
as the action spaces Z and B are exogeneous, i.e., they are pre-specified. We assume that the payoff
functions U and V are bounded, and that everything is scaled such that U, V ∈ [0, 1].

Generating propositions. To generate propositions, the platform first constructs an estimate of
the user’s strategy q ∈ Q. In particular, the platform assumes that q belongs to some set Q̂, which
we assume to be finite. Q̂ can be thought of as the platform’s hypothesis class, with each q̂i ∈ Q̂
being one of the platform’s “user models.” The platform constructs its estimate of q using a belief
µt ∈ ∆(Q̂) over the hypothesis class Q̂. For instance, µt(q̂i) = 1 means that the platform believes
q = q̂i with full certainty at time step t. When there is no user model that matches the user’s
chosen strategy (i.e., q ̸∈ Q̂), we say that the platform is misspecified.

At each time step, the platform uses a (proposition) algorithm p : ∆(Q̂) → ∆(Z) to map its belief
µt to a distribution over propositions. That is, at each time t, the platform uses its current belief
µt to sample a proposition Zt ∼ p(·; µt), as shown on the right side of Figure 1.2 Intuitively, the
algorithm p captures whether the platform chooses to maximize revenue, social welfare, or any
other objective (based on its current belief µt).

2One can think of µt as parameters of a machine learning model trained on the data gathered until time step t.
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Bayesian updating. We focus on the case where the platform uses Bayesian updating to maintain
its belief µt. Specifically, the platform starts with a full-support initial belief µ0 ∈ ∆(Q̂), i.e., a
distribution that assigns non-zero probability to every possible model q̂ ∈ Q̂. At each time step
t, the platform observes the user’s behavior Bt in response to the proposition Zt, then updates its
belief µt to µt+1 using Bayes’ rule, i.e., the platform applies the update

µt+1(q̂i) =
µt(q̂i) · q̂i(Bt|Zt)

∑j∈Ω µt(q̂j) · q̂j(Bt|Zt)
, ∀ q̂i ∈ Q̂. (1)

Committing to strategies. Thus far, we have instantiated a repeated, two-player game between
a user and their platform. The platform generates propositions by applying its algorithm p to its
(evolving) belief µt ∈ ∆(Q̂) in order to sample Zt ∼ p(·; µt). The user responds with behaviors
Bt ∼ q(·|Zt). Note that, for a fixed action spaces, payoffs, and initial beliefs (B,Z , U, V, µ0), the
user’s and platform’s actions are fully determined by q, p, and Q̂. We therefore refer to q as the
user’s strategy and the tuple (p, Q̂) as the platform’s strategy (see Table 1).

In this work, we are interested in how users adapt to their platforms. We therefore study the
setting in which the platform commits to a strategy (p, Q̂) at the start of the game, after which
the user chooses their strategy q, which may depend on (p, Q̂). In order to characterize user
adaptation, we study the idealized setting in which the user has perfect knowledge of (p, Q̂).

3.2 Examples

Our model captures a variety of data-driven settings. For instance, the interactions between a user
and their recommender system (e.g., Netflix or Facebook) can be viewed as a repeated, two-player
game. (Indeed, we provide a detailed recommender system example in Section 5). Our model also
captures other contexts, such as data-driven hiring and ride-share matching, as detailed below.

Example 3.1 (Hiring example). In the hiring context, an employer (i.e., the user) uses a data-driven
hiring platform to determine which job candidates to interview. At each time step t, Zt denotes the set
of candidates at time t and the scores that the hiring platform assigns to the candidates. Bt denotes the
employer’s decisions (i.e., which candidates are interviewed) and the final outcomes (i.e., who is hired). The
employer’s preferences over types of employees are therefore captured by q(·|·). The hiring platform receives
payoff V(Zt, Bt) based on the scored candidates Zt and the employer’s decisions Bt—for example, V might
represent a pay-per-success scheme, scaling with how many top-ranked applicants are successfully hired.
Meanwhile, U is the employer’s payoff, e.g., how many people it successfully hires using the tool.

The hiring platform’s goal is to learn the employer’s preferences so that it can provide scores attuned to
the employer’s needs. It does so by first assuming that the employer’s decision mechanism q belongs to a
hypothesis class Q̂, which describes the possible employers that the platform can model. As it receives more
data on the employer’s hiring practices, it updates its belief µt about the employer’s preferences. Given its
current belief µt, the platform presents candidates by sampling from a distribution p(·; µt), where we call
p the algorithm that the hiring platform uses. For instance, p might select the candidates it believes the
company will be most likely to hire (according to µt) subject to equity constraints.

Example 3.2 (Uber example). In the ride-sharing context, drivers use a ride-sharing app—say, Uber—to
find riders. At each time step, Uber proposes a ride Zt and the driver decides (using their behavior Bt)
whether to accept, reject, or accept then cancel the ride. Uber’s payoff from the interaction is V(Zt, Bt),
which could be a constant fraction of the ride’s cost if the driver accepts it. Similarly, U(Zt, Bt) is the
driver’s payoff, which might be zero if they decline the ride, and might otherwise depend on whether the ride
takes the driver closer to home, whether the ride involves unpleasant driving areas, among other factors.
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Uber’s goal is to match drivers and riders. To minimize delays, Uber attempts to learn each driver’s
habits and preferences. Specifically, it assumes that the driver’s decision function q(Bt|Zt) for whether to
accept, decline, or cancel a ride belongs to some class Q̂. After observing the driver’s behavior, Uber updates
its belief µt about q, and then uses its belief along with its algorithm p to better match riders and drivers.

4 User strategization

In our model, as given in Section 3, the user selects their strategy q after the platform has declared
its strategy (p, Q̂). Although our model allows us to analyze a wide range of user behaviors,
there are two types of users of particular interest. The first type—a naive user—behaves as though
they are only interacting with the platform once by playing actions that maximize their immediate
payoff. On the other hand, a strategic user plans ahead; they adapt their strategy to the platform’s
strategy (p, Q̂) in order to elicit high payoffs in the long run. In this way, a strategic user’s behavior
is dependent on (p, Q̂), whereas a naive user’s behavior remains the same across different choices
of (p, Q̂). We formalize these two types of users below and visualize their behavior in Figure 3.

4.1 Naive user

At each time step t, the naive user plays as though they are only interacting with the platform
once by choosing the action Bt that maximizes their payoff U under the given proposition Zt, as
defined next. If multiple behaviors B ∈ B maximize the immediate payoff, we assume the user
chooses between them uniformly at random.

Definition 4.1 (Naive user). The naive user adopts the strategy qBR, defined as

qBR(B|Z) ∝ 1{B ∈ arg max
B∈B

U(Z, B)}, ∀ B ∈ B, Z ∈ Z .

Importantly, a naive user’s strategy qBR is independent of the platform’s strategy; that is, qBR

remains the same across all choices of (p, Q̂).

Table 1: Key concepts and notation from Sections 3 and 4.

Object Symbol Description

Proposition space Z Platform action space, subset of Rd1 (exogeneous)

Behavior space B User action space, finite subset of Rd2 (exogenous)

Payoff functions U, V Function that maps Z ×B to R (exogeneous)

User strategy q Mapping q : Z → ∆(B) such that Bt ∼ q(·|Zt)

Hypothesis class Q̂ Finite set of models {q̂i : i∈Ω} that platform uses to estimate q

Platform belief µt Distribution over Q̂
Platform algorithm p Function that maps a belief µ ∈ ∆(Q̂) to a distribution in ∆(Z)

such that Zt ∼ p(·; µt)
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Figure 2: Convergence of platform beliefs about the user as t → ∞. (Left) Suppose the user
adopts strategy q, and the platform begins with an initial belief µ0. For illustrative purposes, we
visualize the platform’s initial belief using the corresponding estimate q̂0, and we use the orange
polygon to represent ConvexHull(Q̂). As the platform collects data, its estimate evolves, even-
tually converging. We characterize the beliefs to which the platform converges using the globally
stable set, as defined in Definition 4.2. In this figure, we visualize the stable set Q̂∞ ⊂ Q̂ as a sin-
gleton set Q̂∞ = {q̂∞}, meaning that the platform’s long-run belief will be the point-mass belief
µ∞ = δq̂∞ . (Right) As formalized in Definition 4.2, the belief to which the platform converges
depends on the platform’s strategy (p, Q̂) and the user’s strategy q. We illustrate this dependence
by visualizing how changing the platform’s hypothesis class (from Q̂ to Q̂′) affects the platform’s
limiting belief (from δq̂∞ to δq̂′ ,∞ ).

4.2 Strategic user

In contrast to a naive user, a strategic user maximizes their long-term expected payoff. A strategic
user does this by, first, considering how the platform’s belief µt evolves as t → ∞ if the user
adopts some strategy q. The user uses this understanding to predict its payoff under all possible
strategies q as t → ∞, then selects a strategy that achieves the highest long-term payoff.

We formalize this idea in two stages. First, to characterizes the platform’s long-term belief as a
function of the user strategy q, we define the notion of a globally stable set.

Definition 4.2 (Globally stable set). A set Q̂∞ ⊂ Q̂ is (q, p, Q̂)-globally stable under hypothesis class
Q̂, algorithm p, and user strategy q if and only if, for any full-support initial belief µ0,

P(µt(Q̂∞) → 1) = 1 as t → ∞,

where the probability above is taken with respect to the dynamics given in Section 3.

Intuitively, a set Q̂∞ ⊂ Q̂ is globally stable if and only if it contains the support of the platform’s
limiting belief (i.e., of µt as t → ∞) under strategies (q, p, Q̂). While the entire hypothesis class Q̂
is trivially a globally stable set, more fine-grained stable sets let us characterize how the platform
behaves in the long run under a given (q, p, Q̂). In some cases, we will show the existence a glob-
ally stable singleton set, meaning that the platform’s beliefs converge (almost surely) to a specific
q̂ ∈ Q̂ that depends on (q, p, Q̂). Figure 2 illustrates this case.

Next, we define the platform and user’s expected payoffs.

9



Definition 4.3 (Expected payoffs). Consider a distribution r ∈ ∆(Z) over propositions Z and a user
strategy q ∈ Q. Then, the platform’s and user’s expected payoffs under (r, q) are

V(r, q) := E [V(Z, B)] ,

U(r, q) := E
[
U(Z, B)− λ · dQ(q(·|Z), qBR(·|Z))

]
, (2)

where the expectations are taken with respect to Z ∼ r and B ∼ q(·|Z), dQ is some distance metric over
∆(B), and λ ⩾ 0. The penalty term λ · dQ(q, qBR) in (2) captures the effort that the user expends to deviate
from their naive (best-response) behavior.

Equipped with these definitions, we can now define the strategic user as a user who maximizes
their expected payoff under the platform’s worst-case, limiting behavior. Since different choices
of (q, p, Q̂) can induce different globally stable sets (Definition 4.2), we define the strategic user
with respect to a function S(q, p, Q̂) that maps (q, p, Q̂) to a corresponding globally stable set.

Definition 4.4 (Strategic user). Let S(q, p, Q̂) be a function that maps a user strategy q and platform
strategy (p, Q̂) to a (q, p, Q̂)-globally stable set Q̂∞, as defined in Definition 4.2. Then, we define the
S-strategic user as a user who adopts the strategy q⋆S(p, Q̂), where

q⋆S(p, Q̂) ∈ arg max
q∈Q

min
µ∈∆(S(q,p,Q̂))

U(p(·; µ), q). (3)

To tease apart Definition 4.4, consider each component of (3). First, recall from Definition 4.2
that a set of user models Q̂ is globally stable if it contains all the user models to which the platform
assigns positive probability as t → ∞. That is, if the user and platform adopt strategies (q, p, Q̂)

and S is as defined in Definition 4.4, the platform’s beliefs as t → ∞ are contained in ∆(S(q, p, Q̂)).
Second, note that U(p(·; µ), ·) is the user’s expected payoff if the platform uses algorithm p to

generate propositions under belief µ. Putting these two observations together,

min
µ∈∆(S(q,p,Q̂))

U(p(·; µ), q)

is the S-strategic user’s envisioned worst-case expected payoff as t → ∞. The user then chooses
the strategy q ∈ Q that maximizes this worst-case, limiting payoff. Therefore, a S-strategic user
maximizes their worst-case limiting payoff under the chosen strategies (q, p, Q̂) and mapping S.

Importantly, a strategic user pays attention to the platform’s strategy (p, Q̂) whereas a naive
user’s qBR is the same regardless of the platform’s chosen strategy. We illustrate the differences
between naive and strategic users in Figure 3.

Remarks on globally stable sets. A few remarks are in order. First, there is no unique globally
stable set, in general. As previously mentioned, for instance, Q̂ is always a trivially globally stable
set because µt(Q̂) = 1 for all t. Even so, we will show in Section 6 that there is a principled way
to obtain rather fine-grained globally stable sets.

Second, when the globally stable set contains a single user model (i.e., S∞(q, p, Q̂) = {q̂∞}),
we are guaranteed that the platform belief converges to a the point mass belief µ∞ = δq̂∞ , and
thus that the platform generates propositions from p(·; µ∞). However, as we discuss later on, we
cannot always guarantee that the platform converges to a single unique belief µ∞. In these cases,
a globally stable set characterizes the set of possible limiting beliefs.

Finally, even though strategization is defined with respect to a function S, when S is clear from
context we omit it and say “strategic user” instead of “S-strategic user.” Similarly, we omit S or Q̂
from our notation for the strategic user’s strategy q⋆S(p, Q̂) (see (3)) when clear from context.
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Figure 3: Illustration of a naive user (Section 4.1) on the left and a strategic user (Section 4.2)
on the right. (Left) The (convex hull of the) platform’s hypothesis class Q̂ is given by the orange
polygon. The naive user’s strategy qBR is given by the solid green dot. As in Figure 2, the plat-
form’s estimate of qBR evolves as t → ∞; we visualize the limiting estimate as q̂i = q̂BR,∞. (Right)
The strategic user considers their payoff under the platform’s limiting estimate, i.e., U(pδq̂i , qBR)

and finds that they can instead adopt the strategy q∗(p, Q̂) that leads the platform to a belief (and
in turn, a proposition distribution) that is more favorable for the user.

5 Stylized Example

What are the implications of strategization? Is it good or bad for platforms? In this section, we
consider a styled setting that allows us to answer these questions, and study how user strategiza-
tion impacts a data-driven platform. Our goal is to illustrate and motivate our main results, which
we establish in their full generality in Section 6.

At a high level, we will consider a simple recommender system that partitions its users into
“types” (e.g., comedy lovers and horror lovers) and recommends content based on these types.
The platform’s payoff will be high when the user engages with the recommendations, and the
user’s payoff will depend on both their engagement and their personal taste. Within this setting,
we demonstrate that:

1. The user is incentivized to be strategic—i.e., there is a user strategy that guarantees higher
payoff than the naive (best-response) strategy qBR defined in Definition 4.1. (Proposition 5.2)

2. Whenever the recommendation strategy (p, Q̂) is fixed, the platform’s payoff is never lower
when the user behaves strategically than when the user is naive. (Proposition 5.3)

3. At the same time, user strategization can indirectly hurt the platform. Specifically, suppose
that the platform wishes to update its recommendation algorithm from p to to a counterfac-
tual algorithm pCF. We show that the data that a platform obtains under p cannot be used to
reliably make inferences under pCF. (Proposition 5.4)

4. In the same vein, user strategization makes it harder to predict the effect of design choices.
Specifically, we show that, when the user is strategic, expanding the hypothesis class Q̂ can
unexpectedly hurt the platform’s payoff. That is, if the platform uses a richer class of user
models to estimate the user’s preferences, the platform’s payoff can actually decrease when
the user is strategic. (Proposition 5.5)
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Figure 4: The recommender system that we consider in our stylized example. The platform’s
hypothesis class consists of three user models. Under one model, the user watches exclusively
horror movies; under another, exclusively comedies; and under the last model, the user is equally
interested in comedy and horror. The platform represents the user as a convex combination of
these models, which will dictate the recommendations that the platform gives.

5.1 A simple recommender system

Consider a platform that recommends from a finite set of items Z and allows the user to click or
ignore the recommended item (i.e., let B = {0, 1}). Let the platform’s and user’s payoffs be

V(Z, B) = B, U(Z, B) = B · a(Z), (4)

for all Z ∈ Z and B ∈ B, where a : Z → {−1, 1} is a fixed function that encodes the user’s affinity
for item Z. Intuitively, the platform gains utility when the user clicks on any recommendation, and
the user gets (possibly negative) utility a(Z) from clicking on an item Z, and 0 from not clicking.

User types and the platform’s hypothesis class. Suppose that there are two disjoint types of
content on the platform, Z1 and Z2 (e.g., horror movies and comedies) with Z2 = Z \ Z1. Let
there be three types of users: those who prefer Z1 (i.e., a(Z) ⩽ 1{Z ∈ Z1}), those who prefer
Z2 (i.e., a(Z) ⩽ 1{Z ∈ Z2}), and those who fall into neither of the two former categories. Note
that a(Z) ⩽ 1{Z ∈ Z1} means that the user definitely does not enjoy anything outside of Z1 and
sometimes enjoys content in Z1.

The platform is aware of the three user types, but it does not know the correct partitioning
(Z1,Z2) and instead believes that the two kinds of content are (ZA,ZB). This setting is common
and can be generalized to capture instances in which the platform does not account for all possible
users (e.g., there are “minority” users that do not follow mainstream trends).

The platform thus estimates user behavior using the hypothesis class Q̂ = {q̂1, q̂2, q̂3}, where

q̂i(B = 1|Z) =





(1 − γ)1{Z ∈ ZA} if i = 1,
(1 − γ)1{Z ∈ ZB} if i = 2,
(1 − γ)1{Z ∈ Z} if i = 3

∀ Z ∈ Z , (5)

and γ > 0 is a constant that captures the fact that users will not click on all items of a given type.
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Intuitively, the platform believes there are three possible users: users tend to like either only
content in ZA, or only content in ZB, or all content. Formally, this means that under the user
model q̂1 the user only clicks on items in ZA and does so with probability 1 − γ. Under q̂2, the
user behaves analogously toward ZB. Under q̂3, the user clicks on any item with probability 1− γ.

Recommendation algorithm. Finally, suppose that the platform uses a simple algorithm p that
with small probability ε (which we specify later) recommends a random item Z ∈ Z , and other-
wise recommends Zi with probability proportional to its likelihood of inducing a “click” from the
user (under the platform’s current belief about the user). That is, for all Z ∈ Z ,

p(Z; µ) := ε · 1
|Z|︸ ︷︷ ︸

Uniform w.p. ε

+ (1 − ε) ·
∑q̂i∈Q̂ µ(q̂i) · q̂i(B = 1|Z)

∑Z∈Z ∑q̂i∈Q̂ µ(q̂i) · q̂i(B = 1|Z)
︸ ︷︷ ︸
Proportional to click probability q̂(B = 1|Z) w.p. 1 − ε

, (6)

where recall from Section 3 that µ is the platform’s belief, and so µ(q̂) is the probability that the
platform assigns to the user’s strategy being q̂. We visualize this setup in Fig. 4.

5.2 User behavior

Now, consider a user of the first type, i.e., a user for which a(Z) ⩽ 1{Z ∈ Z1}. Define the set
Z+ = {Z : a(Z) = 1} ⊂ Z1 as the items that the user enjoys. Recall that a user presented with
a recommendation Zt responds with behavior Bt sampled from their behavior strategy q(·|Zt),
where this behavior strategy depends on whether the user is naive or strategic, as follows.

Naive users. In this setting, a naive user will click on items for which they have positive affinity
(i.e., for which a(Z) = 1), and ignore items for which they have negative affinity, i.e.,

qBR(B = 1|Z) = 1{a(Z) ⩾ 0} ∀ Z ∈ Z . (7)

Strategic users. A strategic user, on the other hand, chooses a strategy that elicits the highest
long-term payoffs. For example, they might not click on an item Z that they like (i.e., for which
a(Z) = 1), in order to influence the distribution of recommended items from the platform. To
characterize the strategic user, we first need to understand the limiting beliefs of the platform.

Proposition 5.1. Let Q̂ be the hypothesis class defined by (5). Consider a user strategy q and a platform
algorithm p such that p(·; µ) has full support for all µ ∈ ∆(Q̂). Let supp(q) = {Z ∈ Z : q(B = 1|Z) >
0}. If |supp(q)| > 0, then the following function S maps (q, p, Q̂) to a globally stable set:

S(q, p, Q̂) := {q̂i⋆}, where i⋆ =





1 if |supp(q) ∩ ZB| = 0,
2 if |supp(q) ∩ ZA| = 0,
3 otherwise.

In other words, the platform’s limiting belief is µ∞ = δq̂i⋆ .

Proof. See Appendix A.1.

Now, with this established, we show that unless the content that the user likes belongs entirely to
ZA or to ZB (i.e., Z+ ⊂ ZA or Z+ ⊂ ZB), then strategization strictly improves the user’s utility.
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Ignores an item they like to induce a better feed
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5

1
5× × = 1

2

User payoff: +1 for each click (      ) on movies they like (       ), -1 from each click on disliked movies (       ).

Platform payoff: +1 from each user click (only cares about engagement).

Figure 5: Naive and strategic user strategies in our stylized example (Section 5). We consider
a user whose affinity a(Z) is encoded by items’ opacity in the Figure above. A naive strategy for
this user (left) would click on item Z if and only if a(Z) = 1. This strategy would result in the
platform modeling the user as the “clicks on anything” user q̂3 (see Fig. 4), and thus serve a feed
that is 50% comedy and 50% horror. If the user is strategic (right), they recognize that the naive
strategy is suboptimal, and they avoid clicking on “outlier” comedy videos that they enjoy. The
platform thus estimates the user as a “clicks only on horror” user q̂1, and serves a feed that better
suits the user. Notably, both user and platform payoffs are higher when the user is strategic.

Proposition 5.2. Consider the setting described in Section 5.1, and suppose that the platform’s partition
(ZA,ZB) is not “orthogonal” to the user’s preferences, i.e.,

|Z+ ∩ ZA|
|ZA|

̸= |Z+ ∩ ZB|
|ZB|

.

Then, for sufficiently small ε in (6), a strategic user’s q⋆ = qBR if and only if Z+ ⊂ ZA or Z+ ⊂ ZB.

Proof. See Appendix A.2. Intuitively, if the user is naive and the platform is misspecified, the
platform will learn µ = δq̂3 by Proposition 5.1, and will thus recommend a uniform distribution
over all items. If one of ZA or ZB are closer to Z1, the strategic user can improve their utility by
restricting their clicks to only the set Z+ ∩ ZA (which will lead to the platform recommending
from ZA) or Z+ ∩ ZB (which will lead to the platform recommending from ZB).

5.3 User strategization improves platform payoffs

We now study the impact of strategic behavior on the platform. We begin by showing that user
strategization actually improves (or at least does not hurt) the platform’s payoffs.

Proposition 5.3. Consider the setting described in Section 5.1. The platform’s payoff is as least as high
when the user is strategic as when the user is naive.

Proof. See Appendix A.3. Intuitively, the user only strategizes in order to get “better” content in
the long term, and the platform benefits from this behavior because it receives a positive payoff
every time the user clicks.

Note that Proposition 5.3 holds regardless of the platform’s choice of strategy (p, Q̂), and depends
only on the structure of the payoff functions U and V.
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5.4 User strategization results in unexpected behavior

Now, suppose that, having deployed algorithm p and converged to the limiting belief µ∞ given by
Proposition 5.1, the platform considers changing its algorithm to downweight toxic content. That
is, the platform considers replacing p with a counterfactual algorithm pCF:

pCF(Z; µ) ∝ TOXICITY(Z) · p(Z; µ), (8)

where for some α ∈ (0, 1), the function TOXICITY(Z) ∈ {α, 1} discounts content Z that is toxic.
We show that strategic behavior (on the part of the user) can corrupt the platform’s data so that data
gathered under p cannot be used to make reliable inferences under pCF.

Unreliable counterfactual inferences. A natural way for the platform to gauge whether using
the algorithm pCF is a good idea is to predict its (counterfactual) payoff under (pCF, Q̂). Specifically,
the platform tries to estimate V⋆

(pCF, Q̂), where for any p we define V⋆
(p, Q̂) as

V⋆
(p, Q̂) := max

µ∈∆(S(q⋆,p,Q̂))
V(p(·; µ), q⋆(p, Q̂)), (9)

and we recall that q⋆(p, Q̂) is the strategic user’s strategy in response to the platform strategy
(p, Q̂). Of course, the platform does not have access to V⋆

(pCF, Q̂), as it does not know what the
user’s strategy would be in response to (pCF, Q̂), and so it must instead predict its payoff using its
current user model q̂i⋆ (collected under p). In other words, it computes

V̂(pCF, Q̂) := V(pCF(·; δq̂i⋆ ), q̂i⋆), (10)

where we recall that q̂i⋆ is the platform’s limiting belief from playing the algorithm p.
We show below that for some choices of the toxicity function, the above approach (i.e., (10))

will produce a drastically wrong estimate of the platform’s long-run utility under pCF. In partic-
ular, this mis-estimation might cause the platform to think that switching to pCF will hurt utility
when it will actually greatly help utility.

Proposition 5.4. Consider the setting described in Section 5.1, and the counterfactual algorithm pCF given
by (8). For any content partitioning (ZA,ZB) where |ZA|, |ZB| ⩾ 4, there exists an affinity function a(Z)
(see (4)), constants γ > 0 (see (5)) and ε > 0 (see (6)) and a function TOXICITY : Z → {α, 1} such that,
by applying the strategy above:

(a) the platform correctly predicts its own utility under p, i.e., V̂(p, Q̂) = V∗
(p, Q̂);

(b) the platform thinks its payoff will decrease if it switches to algorithm pCF, i.e., V̂(pCF, Q̂) < V∗
(p, Q̂);

(c) in reality, the platform’s payoff will increase if it switches to pCF, i.e., V⋆
(pCF, Q̂) > V⋆

(p, Q̂).

Proof. See Appendix A.4. The intuition here is that when the user strategizes and only engages
with items from Z+ ∩ ZA, the platform has no information about how much the user likes items
from ZB. If, then, under pCF the user switches to engaging only with items from Z+ ∩ ZB (say,
due to elements in Z+ ∩ ZA being marked as toxic), the platform will not be able to predict its
payoff accurately.

We generalize (and in fact, strengthen) this result in Section 6 (Proposition 6.13).
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Expanding Q̂ can hurt the platform when users are strategic. To further illustrate the counter-
intuitive phenomena that can occur when users are strategic, we also demonstrate that expanding
the hypothesis class of user models can actually hurt the platform. (This finding is unexpected, as
considering a richer class of models typically does not hurt a learning algorithm.)

Proposition 5.5. Consider the setting described in Section 5.1. For any partitioning (ZA,ZB) of Z there
exists an affinity function a(Z) (see (4)), constants γ > 0 (see (5)) and ε > 0 (see (6)), and a user model q̂4
such that when q̂4 is added to hypothesis class Q̂, the platform’s payoff under strategization decreases.

Proof. See Appendix A.5. Intuitively, the platform can inadvertently eliminate the user’s means
of strategization, by adding a candidate user model q̂4 that is more similar to q⋆ than q̂i⋆ is to q⋆,
but whose corresponding distribution over content p(·; δq̂4) is unfavorable for the user. This will
incentivize the user switch to a strategy that lowers the platform’s payoff.

We prove a general version of this result in Section 6 (Proposition 6.14).

6 User strategization and its discontents

In this section, we present our main results. These results generalize and strengthen our findings
from Section 5 and can be summarized as follows.

1. In Section 6.2, we characterize the platform’s limiting belief about the user. In particular,
we show that the platform’s belief converges to the set of user models that are closest to the
user’s chosen behavior strategy q in an information-theoretic sense. This results allows us to
characterize the platform’s beliefs as t → ∞ and, as a result, how the strategic user behaves.

2. We then show that user strategization can help the platform. Specifically, when the user and
platform payoffs are aligned, then strategization improves both user and platform outcomes.

3. We also find that, although user strategization can improve outcomes under the platform’s
current strategy, user strategization can interfere with the platform’s ability to anticipate how
changes to their strategy (p, Q̂) affect their payoff. In particular, when a user is strategic, (1)
the data that a platform obtains under their current algorithm p cannot reliably predict the
platform’s payoff under a different algorithm pCF; and (2) counter to what the platform
might expect, expanding the hypothesis class Q̂ can hurt its payoff.

4. We show that, on the other hand, if the user is naive, it is straightforward to anticipate how
changing (p, Ω) affects the platform’s payoff. This finding begs the question: When are users
incentivized to play their best-response behaviors?

6.1 Preliminaries

We now introduce definitions and assumptions that we use in the remainder of the section.

Definitions. For any two probability measures Π1 and Π2 defined on a measurable space (Ω,F ),
with probability mass (or density) functions π1 and π2, the Kullback-Leibler divergence and total
variation distance are given by

KL(Π1, Π2) := Ex∼π1

[
log
(

π1(x)
π2(x)

)]
(defined when Π1 is absolutely continuous w.r.t. Π2),
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TV(Π1, Π2) := sup
A∈F

|Π1(A)− Π2(A)|

Recall that p : ∆(Q̂) → ∆(Z) denotes the platform’s algorithm. We quantify the distance between
two algorithms using their maximum total variation distance; that is, we let

dP (p1, p2) := sup
µ∈∆(Q̂)

TV(p1(·; µ), p2(·; µ)).

Recall that q denotes the user’s strategy. Let p(·; µ)× q denote the joint distribution of (Z, B) when
the platform’s propositions are drawn according to Z ∼ p(·; µ) and the user’s behavior is given
by B ∼ q(·|Z). Similarly, for any user model q̂i ∈ Q̂, let p(·; µ)× q̂i denote the joint distribution of
(Z, B) when Z ∼ p(·; µ) and the user’s behavior is given by B ∼ q̂i(·|Z).

For a fixed proposition distribution p(·; µ) and a fixed user strategy q, we say that the user
model q̂i strictly dominates the user model q̂j when p(·; µ) × q̂i better explains p(·; µ) × q than
p(·; µ)× q̂j does (in the information-theoretic sense described below).

Definition 6.1 (Strict KL dominance). A user model q̂i strictly KL-dominates q̂j at (p(·; µ), q), as de-
noted by q̂i ≻q

p(·;µ) q̂j if and only if KL(p(·; µ)× q, p(·; µ)× q̂i) < KL(p(·; µ)× q, p(·; µ)× q̂j).

Pervasive assumptions. We now lay out the assumptions that we will use in the remainder of
this work. Throughout the entire section (even when not explicitly mentioned), we will make the
following two assumptions adapted from Frick et al. [FII20].

Assumption 6.2 (Frick et al. [FII20]). The distributions p(·; µ)× q and p(·; µ)× q̂i are continuous
Radon-Nikodym derivatives with respect to some σ-finite measure ν on Z ×B. When Z is discrete
(resp., continuous), ν is a product of the counting (resp., Lebesgue) measure on Z and the counting
measure on B. In particular, p(·; µ), q(·|Z), and q̂i(·|Z) are all well-defined probability densities.

Assumption 6.3 (Frick et al. [FII20]). The platform’s recommendation algorithm p and hypothesis
class Q̂ satisfy the following three conditions:

1. (Support). For any user strategy q, user model q̂, and Z ∈ Z , supp q(·|Z) ⊂ supp q̂(·|Z).

2. (Bounded likelihood ratios). There exists a ν-integrable function h(Z, B) such that

sup
µ∈∆(Q̂)

max
q̂1,q̂2∈Q̂

q̂1(B|Z)
q̂2(B|Z) · p(Z; µ) · q(B|Z) ⩽ h(B, Z) for all B, Z ∈ B ×Z .

3. (Belief continuity). For each user model q̂ ∈ Q̂, there exists a neighborhood N ∋ δq̂ such that
for all Z ∈ Z and µ ∈ N , the function p(Z; µ) is continuous in µ.

Assumption 6.2 simply ensures that the probability distributions we are dealing with are well-
defined, while Assumption 6.3 establishes (mild) conditions under which we can characterize the
platform’s limiting belief (which the rest of our analysis relies on).
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Regularity assumptions. In the coming sections, we will also make certain assumptions about
the platform payoff, algorithm, and hypothesis class being well-behaved. Rather than being nec-
essary for our negative results in the coming sections, these assumptions (Assumptions 6.4 to 6.6)
actually strengthen our results. In particular, we will show (in Section 6.4) that in spite of these
regularity conditions, platform payoffs are still poorly behaved and unpredictable when users
are strategic. Unlike Assumptions 6.2 and 6.3, we explicitly reference the following assumptions
when they are in place.

Assumption 6.4 (Payoff landscape). For any distribution r ∈ ∆(Z) and user behavior q, and for
any ε > 0, there exists r′ ∈ ∆(Z) such that TV(r, r′) < ε and V(r, q) ̸= V(r′, q).

Assumption 6.5 (Well-behaved algorithm). We call an algorithm p : ∆(Q̂) → ∆(Z) well-behaved
if it maps similar beliefs µ (in terms of the corresponding user models) to similar recommendation
distributions p(·; µ), i.e., if

dP (p(·; µ1), p(·; µ2)) ⩽ LP · Eq̂1∼µ1, q̂2∼µ2

[
max
Z∈Z

TV(q̂1(·|Z), q̂2(·|Z))
]

∀ µ1, µ2 ∈ ∆(Q̂).

Assumption 6.6 (Hypothesis class expansion). A setup (Z ,B, V, p, Q̂) satisfies the hypothesis class
expansion assumption if for any fixed user strategy q any two hypothesis classes Q̂1, Q̂2 ⊂ Q̂ such
that Q̂1 ⊂ Q̂2, and a globally stable set function S (as defined in Definition 4.2),

min
µ∈S(q,p,Q̂1)

V(p(·; µ), q) ⩽ min
µ∈S(q,p,Q̂2)

V(p(·; µ), q).

In other words, for a fixed user strategy q, the platform cannot decrease its payoff by expanding
its hypothesis class.

6.2 Platforms converge to beliefs that best approximate user in KL-sense

We can now begin characterizing user strategization. Recall that strategic users plan ahead—they
are aware that their behavior q affects the platform’s future propositions, so the strategic user
chooses q in order to obtain high long-term payoffs. How do users anticipate what will happen in
the long-term? In this section, we show that platforms converge to beliefs that best approximate
the user’s behavior q in an information-theoretic sense, which allows users to reason about their
long-term payoffs.

Drawing from a long line of work [EP16; Boh16; FLS21b; FII20], we use a concept introduced
by Frick et al. [FII20] known as the iterated elimination of dominated states, wherein, given a subset
Q̂′ ⊂ Q̂, one repeatedly eliminates user models q̂j that are strictly KL-dominated by another user
model q̂i in the set (according to Definition 6.1).

Definition 6.7 (Iterated elimination of dominated parameters). Consider a platform strategy (p, Q̂)

and user strategy q. Define the elimination operator R : 2Q̂ → 2Q̂ as

R(Q̂′) = {q̂j ∈ Q̂′ : ̸ ∃ q̂i ∈ Q̂′ such that q̂i ≻q
p(·;µ) q̂j ∀ µ ∈ ∆(Q̂′)}.

Let R0(Q̂) = Q̂ and recursively define Rn(Q̂) = R(Rn−1(Q̂)). Finally, define S∞(q, p, Q̂) = ∩∞
n=1Rn(Q̂).

Frick et al. [FII20] show that the fixed point of the elimination operator S∞(q, p, Q̂) is a globally
stable set, i.e., the platform converges to the parameters that best approximate q in a KL-sense.
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Theorem 6.8 (Theorem [FII20]). For algorithm p and user strategy q, S∞
p,q(Ω) is (p, q)-globally stable.

Theorem 6.8 allows us to characterize strategic users. Suppose, for example, that for a given
user strategy q, S∞(q, p, Q̂) contains a single element q̂∗(q). In this case, we can be certain that the
platform’s belief converges to δq̂∗(q) as t → ∞. A S∞-strategic user would then choose the strategy
q that maximizes their limiting payoff U(p(·; δq̂∗(q)), q).

There are many cases in which S∞(q, p, Q̂) reduces to a single element, known as the Berk-
Nash equilibrium [EP16]. In general, however, S∞(q, p, Q̂) can contain more than one element. In
these cases, Theorem 6.8 tells us that the platform’s proposition distribution as t → ∞ is contained
within the set {p(·; µ) : µ ∈ ∆(S∞(q, p, Q̂))}.

6.3 User strategization can help the platform

Our first main result shows that user strategization can improve the platform’s payoff V. This
occurs when the payoffs of the user and platform are sufficiently aligned.

To see why this might be the case, consider YouTube. YouTube would like to engage and
retain users (by serving users good recommendations), while also ensuring the profitability of
their platform. Although users on Youtube may not care about the platform’s profitability, they
do want good recommendations. In this way, there is some alignment between the user and
platform payoff. Users on YouTube often have an idea of how the YouTube algorithm works and,
in response, adapt to the algorithm in order to elicit better recommendations. This strategization
can ultimately help the platform by improving their recommendations and therefore increasing
user engagement.

The following result (whose interpretation we discuss below) corroborates this relationship,
showing that user strategization can increase the platform’s payoffs.

Proposition 6.9. Consider a platform strategy (p, Q̂) and suppose that U(B, Z) has a unique maximizer
in B for all Z. For a user strategy q, let Ṽ(q) be the platform’s worst-case limiting payoff,

Ṽ(q) := min
µ∈∆(S∞(q,p,Q̂))

V(p(·; µ), q), ∀q ∈ Q, (11)

where S∞ is defined in Definition 6.7. Then, user strategization strictly improves the platform’s worst-case
limiting payoff if

Ṽ

(
arg max

q∈Q
min

µ∈∆(S∞(q,p,Q̂))
U(p(·; µ), q)

)
> Ṽ

(
arg max

q∈Q
min

µ∈∆(Q̂)
U(p(·; µ), q)

)
. (12)

The same is true if the min in (11) is swapped out for a max.

Proposition 6.9 follows almost by definition (see Appendix B.1), and gives a simple condition
under which the platform’s payoff is strictly higher when a user strategizes than when a user is
naive. In particular, there are two takeaways from Proposition 6.9:

1. Strategization helps platforms when U and V are sufficiently aligned. Observe that the right-hand
side of (11) is identical to the analogous expression on the left-hand side of (12), except that
V is swapped out for U in (12). Therefore, when U and V are sufficiently aligned, finding a q
that maximizes the worst-case user payoff (i.e., minµ∈∆(S∞(q,p,Q̂)) U(p(·; µ), q)) will also yield
a high platform payoff.

The following corollary confirms this intuition, showing that user strategization can never
lower the platform’s payoff when U and V are perfectly aligned.

19



1&∗ $

1&∗ $+

Plot U, V along dotted line
U that peaks at omega and omega’
Then shifts left slightly
Infinitesimally close

V increases monotonically

Intuitive example
Bimodal uses
Under p, 

Driver is bimodal – prefers either long drives or short drives, but not in between. However, 
knowing that Uber is only capable of catering to one, they try to show Uber just the one. 
However, Uber slightly changes its pricing plan. 

/0 = 1&# ∶ 3 ∈ Ω

, along dashed line

/: $, 6  

Platform payoff
/: $+, 6  

Healthcare example

AI tool switches from recommendation algorithm $ to $+.
$ adapts to the doctor’s most likely behavior (unimodal). 
$+ adapts to their two most likely behaviors (bimodal). 

The doctor has two different modes. 
e.g., doctor sometimes tests conservatively and sometimes 
aggressively due to factors that aren’t seen by AI tool.

So, the doctor behaves differently under algorithms $ and $+.
Under $, they switch between 2 accounts based on mode. 
Under $+, they use the same account for both modes.

Doctor’s behavior changes significantly under $ and $+ à the platform’s 
estimate of its payoff under $+ using data from $ (    ) can be very far from reality (    )

Figure 6: A platform cannot estimate its counterfactual payoff well when a user is strategic.
That is, the platform’s estimated payoff under an algorithm pCF if the data used to estimate its
payoff is collected under p can be arbitrarily far from the true value (Proposition 6.13). On the
left, we visualize how, even when p and pCF are close and V is smooth in its first argument,
the platform can misestimate its payoff under pCF. In the proof of Proposition 6.13, we provide
intuition for settings in which q̂∗(p) and q̂∗(pCF) can be far apart even when p and pCF are close.

Corollary 6.10. The platform’s payoff under a strategic user is at least as high as its payoff under a
naive user when U = V.

2. Strategization can be viewed as a form of coordination. This follows from the fact that the left-
and right-hand sides of (12) look similar, with the only difference being the set of beliefs over
which µ is minimized. The set on the left-hand side is constrained because the user antici-
pates how the platform will behave. When the user and platform have aligned incentives,
and the user has a good idea of how the platform will behave, the resulting “coordination”
helps both the user and the platform.

The following corollary solidifies this intuition, showing that even when user and platform
have only partially aligned payoffs, they can coordinate (via strategization) to find a region
of proposition space where their payoffs are aligned.

Corollary 6.11. The platform’s payoff under a strategic user is at least as high as its payoff under a
naive user when there exist functions g : B → R and f : Z → {−1, 1} such that user and platform
payoffs decompose as U(B, Z) = g(B) · f (Z) and V(B, Z) = g(B) respectively.

6.4 User strategization can cause unexpected behavior

Although user strategization can help the platform under its current strategy (p, Q̂), we now show
that strategization interferes with learning by “corrupting” the data that the platform collects.
We further show strategization can cause other unexpected behavior—specifically, expanding the
hypothesis class Q̂ that the platform uses can unexpectedly hurt the platform under strategization.
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6.4.1 Changing the algorithm p results in unpredictable payoff

In this section, consider a fixed hypothesis class Q̂. Suppose that, after deploying algorithm p,
the platform wants to change its algorithm to a counterfactual algorithm pCF. In these cases, the
platform may wish to estimate their expected payoff if they were to switch to pCF. Formally, for
any belief µ ∈ ∆(Q̂) and algorithm p′, we define the platform’s predicted payoff as

V̂(p′, µ) := Eq̂∼µ

[
V(p′(·; µ), q̂)

]
. (13)

Now, consider a user who is S∞-strategic. Recall from Section 4.2 that q⋆(pCF, Q̂) denotes the strat-
egy that the strategic user adopts if the platform employs strategy (pCF, Q̂). We can consequently
write the platform’s worst-case payoff under pCF and user strategization as

V⋆
(pCF) := min

µ∈∆(S∞(q,pCF))
V(pCF, q⋆(pCF)). (14)

The following result shows that if a platform gathers data under p but is interested in estimating
its payoff under an alternative algorithm pCF, its estimate may be arbitrarily bad when the user
is strategic. This result holds even when the platform is (nearly) correctly specified, i.e., even for the
highly expressive hypothesis class Q̂ defined below:

Definition 6.12 (ε-net hypothesis class). For a finite proposition space Z and some ε > 0, let ∆ε(B) be
an ε-net of ∆(B) with respect to the ℓ∞ metric. An ε-net hypothesis class is the set of all possible mappings
from propositions in Z to behavior distributions in ∆ε(B), i.e., Q̂ε := ∆ε(B)Z (and thus |Q̂ε| ≈ ( 1

ε )
|B|·|Z|).

By proving the result below under Definition 6.12, we rule out the case where the platform is
unable to predict counterfactual payoffs simply because it cannot accurately model the user.

Proposition 6.13. Consider a given platform strategy (p, Q̂) and platform payoff function V. Suppose
that Q̂ is an ε-net (Definition 6.12) for some sufficiently small ε, that p(·; µ) has full support for all µ, and
that Assumption 6.4 holds. Define ζ as the maximum gap in predicted platform payoff, i.e.,

ζ(p′) = max
q̂1,q̂2∈Q

V(p′(·; δq̂1), q̂1)− V(p′(·; δq̂2), q̂2).

Further assume that there exists β ⩾ α ⩾ 0 such that α ⩽ Varp(·;µ)×q[V(B, Z)] ⩽ β for any belief µ and
user strategy q. Then, for any ε0, ε1 > 0, there exists a pCF and U such that dP (p, pCF) ⩽ ε0, and and

min
µ∈S∞(q,p)

∣∣∣V̂(pCF, µ)− V⋆
(pCF)

∣∣∣ ⩾
√

ζ(pCF)2 − 4(β − α)− ε1. (15)

Proof. See Appendix B.2. The intuition behind the proof is given in Figure 6.

If the variance of the platform’s payoff does not change much across beliefs (i.e., if α ≈ β), the right
side of (15) is effectively the largest gap that can exist between an estimated payoff and the true
payoff. As such, Proposition 6.13 states that data collected under p can be unhelpful for making
predictions about a counterfactual algorithm (see Fig. 6 for an example). The intuition behind this
result is that, when users strategize, the platform limiting payoff is nonsmooth in p, i.e., there exists
a pCF that is ε-close to p for which the payoff under strategization is far from that under p.
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6.4.2 Expanding Q̂ can unexpectedly hurt the platform

Next, we show that when a user is strategic, expanding Q̂ can hurt the platform’s payoff. This is
somewhat counterintuitive, as Q̂ is the hypothesis class that the platform users to infer the user’s
behavior q, and expanding one’s model family typically does not hurt estimation.

To make this statement formal, suppose that the user is S∞-strategic and that the algorithm p
is fixed. (Since p is held fixed in this section, we suppress its notation below.) Let q⋆(Q̂) denote
the strategy that the strategic user adopts if the platform uses hypothesis class Q̂. That is, let

q⋆(Q̂) := arg max
q∈Q

min
µ∈S∞(q,Q̂)

U(p(·; µ), q).

Proposition 6.14. Consider a platform strategy (p, Q̂) and a platform payoff function V bounded in [0, 1]
(without loss of generality). Suppose (Z ,B, V, p, Q̂) satisfy the expansion assumption (Assumption 6.6),
and that V(Z, B) has a unique maximizer with respect to B for each Z ∈ Z . Then, there exist a user payoff
function U and sets Q̂1, Q̂2 ⊂ Q̂ such that Q̂1 ⊆ Q̂2, but

min
µ∈S∞(q⋆(Q̂1),Q̂1)

V(p(·; µ), q⋆(Q̂1)) > max
µ∈S∞(q⋆(Q̂2),Q̂2)

V(p(·; µ), q⋆(Q̂2)).

Proof. See Appendix B.3. The intuition is that the platform can unintentionally remove the user’s
means of strategization. That is, a user may want to induce a specific belief from the platform
without straying too far from their best-response strategy. Thus, they purposefully pick a strategy
q∗1 that the platform misinterprets in a desirable way. When the platform gets “better” at capturing
their behavior by adding a user model that is close to q∗1 , the user is forced to move even further
away from their best-response behavior, making things worse for the platform.

Like Proposition 6.13, Proposition 6.14 shows that user strategization can cause unexpected
behavior. Both imply that strategization makes it difficult to use its data under one strategy (p, Q̂)
make inferences about a different strategy.

6.5 System behavior is more predictable for best-response users

The previous section establishes that strategization can make it difficult for the platform to predict
how the system behaves if either p or Q̂ are changed. This is consequential because the platform
may wish to use the data that they have collected under (p, Q̂) to estimate some quantity under
a counterfactual (p′, Q̂′). In this section, we show that these problems do not arise when users are
naive. In other words, when the user plays according to their best-response at each timestep, the
platform benefits because it is easier for them to make inferences under changes to (p, Q̂).

Formally, suppose we have a best-response user, and fix a platform hypothesis class Q̂. Recall
the platform’s payoff estimator (13) (restated below), and let VBR(pCF) denote the true payoff
under (pCF, Q̂) (i.e., analagous to (14)) when the user is naive:

V̂(pCF, µ) = Eq̂∼µ

[
V(pCF(·; µ), q̂)

]
.

VBR(pCF) = min
µ∈∆(S∞(qBR,pCF))

V
(

pCF(·; µ), qBR
)

.

Our first result shows that, in contrast to Proposition 6.13, using data gathered under p to estimate
the platform’s payoff under pCF is a good idea for best-response users.
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Proposition 6.15. Suppose that the platform’s strategy (p, Q̂) is such that the hypothesis class Q̂ is an
ε-net (Definition 6.12). Let pCF be a counterfactual algorithm that is well-behaved (Assumption 6.5); then,

max
µ∈∆(S∞(qBR,p))

∣∣∣V̂(pCF, µ)− VBR(pCF)
∣∣∣ ⩽

√
ε

(
(2LP + 1)

√
|B|
)

. (16)

As a result, by using a sufficiently fine ε-net hypothesis class Q̂, the platform can estimate its payoff under
counterfactual algorithms up to arbitrary precision.

Proof. See Appendix B.4.

Next, suppose that the hypothesis class Q̂ can change but the algorithm p is fixed. In addition,
the next result shows that, in direct contrast to Proposition 6.14, payoffs cannot decrease when the
hypothesis class Q̂ is expanded and the user plays naively.

Proposition 6.16. Consider a given (p, Q̂) and V. Under Assumption 6.6, for any Q̂′ ⊂ Q̂, Then

V(Q̂, qBR) ⩾ V(Q̂′, qBR).

Proof. This follows directly from Assumption 6.6.

Propositions 6.15 and 6.16 show that incentivizing the user to play their best-response behavior
can lead to more reliable data and payoffs for the platform, begging the question: When are users
incentivized to play naively?

7 Trustworthy algorithm design

In the previous sections, we found that strategic behavior can hurt the platform. Specifically, we
showed that user strategization violates a key assumption of most data-driven algorithms that
user behavior is exogeneous, which compromises the platform’s ability to re-use the data that
it collects, e.g., to train future algorithms. In contrast, we found that the platform’s data looks
exogenous if the user behaves naively. That is, a platform can recover the exogeneity assumption
if it encourages users to behave naively.

In this section, we argue that this analysis suggest that trustworthy design can help platforms.
We discuss how trustworthiness produces two beneficial outcomes: users are not incentivized
to strategize—which allows platforms to recover the exogeneity assumption—and users are in-
centivized to engage with the platform over alternatives. We begin in Section 7.1 with a formal
definition of trustworthiness. Importantly, we draw a distinction between trustworthiness and
strategy-proofness, connecting our definition to the concept of individual rationality in mecha-
nism design. We then discuss how this definition relates to existing notions of trust in Section
7.2. In Sections 7.3-7.4, we use this definition to unpack four reasons why users do not trust their
platforms and propose two interventions for building user trust.

7.1 Trustworthiness and its effect on the platform

Building on our analysis in Section 6, we present a formal definition of trustworthiness.

Definition 7.1 (Trustworthy). Let q⋆ denote the policy that the S∞
Ω-strategic user adopts when the plat-

form employs algorithm p. A platform’s policy (p, Q̂) is κ-trustworthy when the user is not incentivized to
strategize and the naive user’s limiting payoff under (p, Q̂) is at least κ ∈ R, i.e.,
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1. minµ∈∆(S∞
Ω(p,q⋆)) U(pµ, q⋆) ⩽ minµ∈∆(S∞

Ω(p,qBR)) U(pµ, qBR) and

2. minµ∈∆(S∞
Ω(p,qBR)) U(pµ, qBR) ⩾ κ.

First requirement of trustworthiness. One can think of Definition 7.1(1) as follows: a platform
satisfies the first requirement of trustworthiness if the user does not have to strategize because
the platform looks out for the user’s interests so they do not have to do so themselves. When the
platform meets this requirement, the user might as well play their best-response action.

As an example, consider YouTube. Suppose that a user likes to alternate between “junk” con-
tent and “healthy” content based on their mood [KMR22]. If they were “truthful,” then they
would always pick the video that fits their current mood.3 Suppose that the platform adopts an
algorithm that only accounts for one possible mood and can therefore only model the user as liking
“junk” or “healthy” content, but not both. Then, the user is better off behaving strategically; for
instance, only using YouTube for one—but not both—of their moods (or maintaining two YouTube
accounts, as has been observed anecdotally). Intuitively, the user does not trust that the platform
interprets their behavioral data correctly. That is, they do not trust that the platform will use their
behavioral data to generate good content in the future. On the other hand, if YouTube is able to
correctly parse the user’s mood and recommend content to suit both moods, the user does not
have to behave strategically. The user therefore trusts the platform to correctly interpret their ac-
tions. A platform may also be deemed trustworthy (or untrustworthy) for many other reasons,
such as how they protect user privacy.

Second requirement of trustworthiness. Definition 7.1(2) states that trustworthiness is earned
only if the user’s expected limiting payoff is at least κ when the user plays their best-response
action. That is, it is not enough that the platform is strategy-proof, as required by Definition
7.1(1). Trustworthiness additionally requires that behaving naively is sufficiently beneficial for
the user. Consider, for instance, a platform that adopts a strategy (p, Q̂) under which the user’s
limiting payoff is −1 no matter what strategy the user adopts. Then, (p, Q̂) satisfies Definition
7.1(1) because the user is not incentivized to strategize since all strategies induce a payoff of −1,
but the system is not κ-trustworthy under Definition 7.1(2) for any κ > −1.

This requirement echoes individual rationality, a concept in mechanism design under which
agents continue engaging with the platform (which is known in mechanism design as “participat-
ing in the mechanism”) if it is beneficial for them to do so. Using this interpretation, κ determines
the expected limiting payoff at which the user does not trust the platform although they may be
willing to continue engaging with the platform. In this way, κ captures the user’s ability to tolerate
the untrustworthy behavior. The higher κ is, the more trust the user places in the platform, and
the more likely the user is to engage with the platform over alternatives.

Implication of trustworthiness on the platform. As shown in Sections 5-6, trust is central to
the platform’s ability to collect reliable data. Without trust, users are incentivized to strategize,
which is particularly harmful for platforms because it means that the data that they use for mul-
tiple purposes—such as training future algorithms or predicting the performance of candidate
algorithms—is unreliable. More broadly, earning user trust is often beneficial to platforms when
they rely not only on the continued participation of their users, but also on the amount of user en-
gagement. The more time users spend on the platform, the more data the platform collects. This

3Note that this setting can be modeled by allowing U to be stochastic, with a hidden variable that represents the
user’s underlying stochastic mood.
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facet of trustworthiness is captured by the second requirement in Definition 7.1—if a platform is
only κ-trustworthy, but another platform is κ′-trustworthy for κ′ > κ, users may be compelled to
spend more time on the other platform (or even switch platforms). There are, of course, occasions
when a platform is not incentivized to build trust, which could occur when the platform bene-
fits so greatly from strategization (enough to overshadow the potential harms of unreliable data)
that platform does not rely greatly on data collection for prediction, or there is little risk of users
leaving the platform.

7.2 Elements of trustworthiness

The goal of this section is to place our definition of trustworthiness within the broader discussion
of trustworthiness. Below, we identify several key elements of trustworthiness that appear in the
literature on trust [Kra99; Har06; Nis01], where we examine situations in which “I” trust “you.”

1. Trustworthiness does not imply that you and I have perfectly aligned interests; only that
your behavior takes some of my interests into account.

2. Distrust arises when I expect to incur losses from interacting with you (unless I behave
strategically) and, conversely, trust arises when I expect to gain from interaction.

3. Trust is inherently relational in that trusting you to look after my interests may depend on
who “you” and “I” are, so that “you” are not necessarily universally trustworthy.

4. Trust is generally meaningful only when there are repeated interactions. In particular, I only
put trust in you if I must rely on you in the future. Moreover, I only trust you to take my
interests into account if I believe you value a continued relationship with me.

5. Trust involves vulnerability—the possibility of harm—because to trust is to allow another to
affect one’s interests.

All of these elements are also present in our Definition 7.1. First, a user and platform need not
have the exact same interests for the results in Section 6, which show that untrustworthiness can
be harmful to the platform, to hold. Second, distrust in our work arises when a user is incentivized
to strategize because the platform does not account for the user’s interests, meaning that trust and
distrust are linked to gains and losses from interactions. Third, our formulation of trust is rela-
tional; a user’s best-response and strategic behavior are specific to them, meaning that a platform’s
trustworthiness may differ across users. Fourth, a continuing relationship is pivotal to our formu-
lation of trust. In fact it matters in two ways: (i) users only strategize because they can anticipate
future interactions, and (ii) platforms typically rely on the continued participation of users for
success. Lastly, user payoffs, as modeled in Section 3.1, depend on both the user’s action as well
as the platform’s. As such, the user’s happiness is influenced by the platform. This point is salient
because the risk of being harmed is why trust often matters in data-driven decision-making.

Remark 7.2. Note that there are other factors that may influence trust, such as the credibility of the trusted
party, their reputation, and even whether they are virtuous or reliable. These factors are based on the
perceived qualities of the trusted party. Although perception has a significant impact on trust, we leave
perception-based factors trust to future discussions, focusing instead on settings in which trust relies pri-
marily on other factors. By putting perception aside, we align more closely with conceptualizations of trust
such as Hardin’s, who states that trust is determined by the interests of each party and the desire of one
party to take the other party’s interests into account in order to foster a continuing relationship [Har06].
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7.3 Reasons why a user may not trust their platform

Under Definition 7.1 of trustworthiness, there are three reasons why a user might not trust their
platform’s policy. We discuss these three reasons in this section, then use these insights in the
following section to inform how platforms can build user trustworthiness.

Misspecification. We say that a platform is misspecified with respect to qBR when qBR ̸∈ Q̂. Mis-
specification implies that, should a user choose to play their best-response actions, the platform
would not be able to model their behavior perfectly. For example, misspecification occurs when
a platform believes that there are a few canonical “types” of users, but the user of interest does
not fit into any of these types. Misspecification often induces users to strategize because the plat-
form’s inability to model the user correctly can mean that a user gains more by strategizing (e.g.,
by pretending to be one of the canonical types of user).

Hidden, changing state. Suppose that a user has different “modes.” For instance, a user on
an online shopping platform sometimes needs clothes for everyday wear and sometimes needs
clothes for special occasions. Alternatively, suppose that there is salient information that is only
available to the user but not to the platform.

In such cases, there is a state that changes across time and is hidden from the platform. We do
not explicitly model this setting in our setup in Section 3; however, one can encompass such cases
by adding a Step 0 to the game in Section 3.1 during which a state xt is drawn at the start of each
time step, i.e., “nature” selects a state xt. The user then chooses action Bt ∼ q(·|Zt, xt) in Step 2,
and the user receives a payoff U(Zt, Bt, xt) in Step 3. Because the platform does not have access
to salient information xt, the user may find that their xt-dependent behavior is misattributed to
other factors. This misattribution can lead the platform to behave unexpectedly (to the user’s
detriment), therefore prompting the user to strategize.

Algorithm incompatible with user payoffs. Recall that p denotes the platform’s algorithm and
U denotes the user’s payoff. A user may strategize if p is incompatible with U. Even if the platform
is not misspecified with respect to the best-response strategy qBR and the platform has access to
all salient information (such that the two reasons for strategization given above are absent), a user
may wish to strategize if the platform’s method for generating propositions is detrimental to a
user following qBR. This would, for instance, be the reason why users often strategize when an
algorithm is known to have feedback loops or why users strategize when their recommendation
algorithm shows too much content of type X after a user clicks on a piece of content of type X.

7.4 Interventions for improving trustworthiness

Before we discuss interventions for increasing trustworthiness under Definition 7.1, we first de-
scribe and explain why naive interventions that do not build trustworthiness but attempt to over-
come the challenges untrustworthiness often fall short. We then discuss how two interventions
for improving trustworthiness can complement these efforts.

Naive interventions. Recall that the main challenge of untrustworthiness is that user strategiza-
tion distorts the platform’s data, which compromises its ability to estimate user behavior under
counterfactual strategies (p, Q̂). The platform might wish to overcome the challenges of untrust-
worthiness by: (i) designing a strategy-proof mechanism, (ii) modeling the user’s payoff function
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U in order to predict their behavior under any counterfactual (p, Q̂), (iii) expanding the hypoth-
esis class Q̂, (iv) guessing the user’s hidden state xt, as described in Section 7.3, or (v) improving
one’s algorithm p. Below, we discuss how these interventions can fall short of methods aimed at
directly boosting trustworthiness.

First, designing strategy-proof mechanisms does not necessarily elicit to higher payoffs for the
user or platform. For instance, an algorithm p that recommends YouTube videos that all users
universally dislike is strategy-proof. In this scenario, the user’s best-response (i.e., naive) strategy
is not to click on any recommended video. This strategy is also their highest-payoff strategy
because clicking on any video incurs a negative payoff. Therefore, p is strategy-proof, but it does
not lead to positive outcomes for the user or the platform.

The second option seeks to model each user’s payoff function U so that it is possible to infer
how the user would behave under alternative platform strategies (p, Q̂). Developing such models
for complex settings is extremely difficult. In particular, this approach becomes challenging when
users are heterogeneous, there is unobserved confounding, and the space of possible platform
strategies (p, Q̂) is large. Imagine, for instance, predicting how an arbitrary social media user
would behave under any possible feed. Such an estimation task is notoriously challenging. For
one, both the user’s and platforms action spaces are large (i.e., the user can interact with content in
many possible ways, and there are many possible posts that the platform could recommend). For
another, each social media user behaves differently (i.e., there is a high heterogeneity). In similarly
complex (or high-risk) settings, developing reliable models is difficult.

Third, one might naturally think to expand Q̂ in order to address issues that arise from mis-
specification. We show in Proposition 6.14, however, that expanding the hypothesis class Q̂ can,in
fact, lower the platform’s payoff and does not necessarily remove misspecification unless qBR is
guaranteed to be in the new hypothesis class.

Finally, we argue in the remainder of this section that the fourth and fifth approaches described
above can indeed improve outcomes for the user and platform, but are less straightforward than
interventions that directly boost trustworthiness, as given next.

Recommendation #1: Offering multiple algorithms. Offering users multiple algorithms from
which they can choose addresses several issues simultaneously. As an example, consider Twitter,
which offers personalized, chronological, and trending feeds. Returning to the three reasons users
strategize, as given in Section 7.3, allowing users to select between multiple algorithms at each
time step t is a straightforward way of accommodating unobserved confounding, e.g., a hidden
state xt. While the platform could predict xt, doing so is inevitably less reliable that giving users
the ability to select an algorithm based on xt themselves. Second, if one algorithm is incompatible
with a user’s payoffs, the user will simply ignore that algorithm. On the other hand, if the platform
only offers one algorithm p, it inevitably alienates users whose payoffs are incompatible with p.

Offering multiple algorithms can therefore diminish two of the reasons that users strategize
(as given in Section 7.3) and guarantee that a user’s limiting payoff is at least as high as under a
single algorithm. It therefore improves trustworthiness by Definition 7.1.

Recommendation #2: Providing feedback mechanisms. Another intervention that builds trust
and therefore mitigates the risks of strategization is providing users opportunities to give mean-
ingful feedback. Returning to the reasons for strategization in Section 7.3, feedback can serve as a
simple and reliable indicator for misspecification. If a user consistently indicates that the platform
is not behaving in their interest, then the platform not only learns that this user is misspecified
under Q̂, but also gains insight into how Q̂ can be improved. One can also view feedback as a
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“high-friction” or “high-cost” signal. Typically, signals with high friction or cost are more infor-
mative than low-friction or low-cost ones.

There are many ways of eliciting feedback, and not all mechanisms are made equal. Platforms
must ensure that they are comprehensive but not overwhelming, easily accessible but not so per-
vasive that users simply treat it as an annoyance. Determining the precise design of feedback
mechanisms is out of the scope of this work and may be of interest in future work.
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ing: A Selective Overview of Theories and Algorithms”. In: Handbook of Reinforcement
Learning and Control. Ed. by Kyriakos G Vamvoudakis, Yan Wan, Frank L Lewis, and
Derya Cansever. Cham: Springer International Publishing, 2021, pp. 321–384.

32



Appendix

Table of Contents
A Omitted Proofs: Illustrative Example 34

A.1 Proof of Proposition 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
A.2 Proof of Proposition 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
A.3 Proof of Proposition 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.4 Proof of Proposition 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.5 Proof of Proposition 5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

B Omitted Proofs: Main Results 42
B.1 Proof of Proposition 6.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
B.2 Proof of Proposition 6.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
B.3 Proof of Proposition 6.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
B.4 Proof of Proposition 6.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

33



A Omitted Proofs: Illustrative Example

In this section, we provide the proofs omitted from Section 5.

A.1 Proof of Proposition 5.1

Proposition 5.1. Let Q̂ be the hypothesis class defined by (5). Consider a user strategy q and a platform
algorithm p such that p(·; µ) has full support for all µ ∈ ∆(Q̂). Let supp(q) = {Z ∈ Z : q(B = 1|Z) >
0}. If |supp(q)| > 0, then the following function S maps (q, p, Q̂) to a globally stable set:

S(q, p, Q̂) := {q̂i⋆}, where i⋆ =





1 if |supp(q) ∩ ZB| = 0,
2 if |supp(q) ∩ ZA| = 0,
3 otherwise.

In other words, the platform’s limiting belief is µ∞ = δq̂i⋆ .

Proof. In this proof, we will use the result of Frick et al. [FII20], restated as Theorem 6.8. Note that
the theorem cannot be applied directly due to the “bounded likelihood ratios” regularity condition
being violated—still, since p(·; µ) has full support, we can always wait until the violating user
models are eliminated by Bayes’ rule (which happens almost surely), and then apply the results
from [FII20] thereafter.

For example, note that q̂3(B|Z) > 0 for all B ∈ B and Z ∈ Z , so if supp(q) ∩ ZA ̸= ∅, then
with probability one we will eventually see a (B, Z) such that B = 1 and Z ∈ ZA, at which point

µ(q̂2) =
µt−1(q̂2) · q̂2(Bt|Zt)

∑q̂i∈Q̂ µt−1(q̂i) · q̂i(Bt|Zt)
= 0,

and thus we can apply the results from [FII20] to the set {q̂1, q̂3}.
note that for any belief µ and any user model q̂,

KL(pµ × q, pµ × q̂) = E(B,Z)∼pµ×q

[
log
(

pµ(Z) · q(B|Z)
pµ(Z) · q̂(B|Z)

)]

= EZ∼pµ

[
EB∼q(·|Z)

[
log
(

q(B|Z)
q̂(B|Z)

)]]
,

and so for the user model q̂3, ε ⩽ q̂3(B|Z) ⩽ 1 − ε for all B ∈ B, Z ∈ Z , and so the quantity above
is guaranteed to be finite.

Now, since the algorithm p0 recommends a random item Z with probability ε,

KL(pµ × q, pµ × q̂) ⩾ ε · 1
|Z| ∑

Z∈Z
EB∼q(·|Z)

[
log
(

q(B|Z)
q̂(B|Z)

)]

= ε · 1
|Z|

(
∑

Z∈ZA

EB∼q(·|Z)

[
log
(

q(B|Z)
q̂(B|Z)

)]
+ ∑

Z∈ZB

EB∼q(·|Z)

[
log
(

q(B|Z)
q̂(B|Z)

)])

⩾ ε · 1
|Z|

(
max
Z∈ZA

q(B = 1|Z) · log
(

q(B = 1|Z)
q̂(B = 1|Z)

)

+ max
Z∈ZB

q(B = 1|Z) · log
(

q(B|Z)
q̂(B|Z)

))
.
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Now, if |supp(q) ∩ ZA| > 0, then the first maximum is infinite for q̂ = q̂2, since there will be at
least one element Z ∈ ZA for which q(B = 1|Z) > 0, but q̂2(B = 1|Z) = 0 for Z ∈ ZA. Similarly, if
|supp(q)∩ZB| > 0, the second maximum will be infinity for q̂1. This observation suffices to show
that if both |supp(q) ∩ ZB| > 0 and |supp(q) ∩ ZB| > 0, the platform will converge to q̂3.

To complete the proof, suppose without loss of generality that |supp(q)∩ZB| = 0. We need to
prove that in this case, the platform will converge to q̂1 (and in particular, not q̂3). We will show
this by using KL-dominance—in particular, for any belief µ,

KL(pµ × q, pµ × q̂3)− KL(pµ × q, pµ × q̂1) = E(B,Z)∼pµ×q

[
log
(

q(B|Z)
q̂3(B|Z)

)
− log

(
q(B|Z)
q̂1(B|Z)

)]

= E(B,Z)∼pµ×q

[
log
(

q̂1(B|Z)
q̂3(B|Z)

)]

= E(B,Z)∼pµ×q

[
log
(

q̂1(B|Z)
q̂3(B|Z)

)]
.

Since q̂3(·|Z) = q̂1(·|Z) for Z ∈ ZA, this simplifies to

= EZ∼pµ

[
EB∼q(·|Z)

[
log
(

q̂1(B|Z)
q̂3(B|Z)

)] ∣∣∣∣Z ∈ ZB

]
· P (Z ∈ ZB) .

By assumption (i.e., that |supp(q) ∩ ZB| = 0), we know that q(·|Z) = δB=0, and so

= EZ∼pµ

[
log
(

q̂1(B = 0|Z)
q̂3(B = 0|Z)

) ∣∣∣∣Z ∈ ZB

]
· P (Z ∈ ZB)

= log
(

1
γ

)
· P (Z ∈ ZB)

> 0.

Thus, q̂1 strictly dominates q̂3 at all beliefs µ, and so the platform will converge to q̂1.

A.2 Proof of Proposition 5.2

Proposition 5.2. Consider the setting described in Section 5.1, and suppose that the platform’s partition
(ZA,ZB) is not “orthogonal” to the user’s preferences, i.e.,

|Z+ ∩ ZA|
|ZA|

̸= |Z+ ∩ ZB|
|ZB|

.

Then, for sufficiently small ε in (6), a strategic user’s q⋆ = qBR if and only if Z+ ⊂ ZA or Z+ ⊂ ZB.

Proof. We begin with the reverse direction. Suppose Z+ is not fully contained in either ZA or
ZB. By Proposition 5.1. If the user is naive, the platform will converge to the belief µ(q̂3) = 1,
and so the limiting proposition distribution will be a uniform distribution over all items (since
q̂3(B = 1|Z) = 1 − ε for all Z). The expected user payoff will then be equal to

U(pδq̂3 , qBR) =
|Z+|
|Z| .

Without loss of generality, suppose ZA is a better approximation than ZB to Z1, and in particular

∆ :=
|ZA ∩ Z+|

|ZA|
− |ZB ∩ Z+|

|ZB|
> 0.

35



We define ε (the probability with which p0 recommends items uniformly at random) as

ε <
|ZA| · |ZB| · ∆
|ZA ∩ Z+| .

Now, rearranging this definition yields

|ZA| · |ZB| ·
( |ZA ∩ Z+|

|ZA|
− |ZB ∩ Z+|

|ZB|

)
> |ZA ∩ Z+| · ε

|ZB| · |ZA ∩ Z+| − |ZA| · |ZB ∩ Z+| > |ZA ∩ Z+| · ε

(1 − ε) · |ZB| · |ZA ∩ Z+| > ε · |ZA ∩ Z+| · |ZA|+ |ZA| · |ZB ∩ Z+|
(1 − ε) · |ZA ∩ Z+| · |ZA|+ (1 − ε) · |ZB| · |ZA ∩ Z+| > |ZA ∩ Z+| · |ZA|+ |ZA| · |ZB ∩ Z+|

(1 − ε) · |ZA ∩ Z+| · |Z| > |Z+| · |ZA|
|ZA ∩ Z+|

|ZA|
>

|Z+|
|Z| · 1

1 − ε
.

Now, consider an alternative strategy q′ where the user clicks only on items in Z+ ∩ ZA. By
Proposition 5.1, this would lead the platform to converge to q̂1, and so the user’s payoff would be

U(pδq̂1 , q′) = ε · |Z
+ ∩ ZA|
|Z| + (1 − ε) · |Z

+ ∩ ZA|
|ZA|

> ε · |Z
+ ∩ ZA|
|Z| +

|Z+|
|Z| ,

and so playing the strategy q′ guarantees the user strictly higher long-run payoff than qBR.
For the forward direction, suppose without loss of generality that Z+ ⊂ ZA. Observe that

conditioned on a fixed distribution of propositions pµ ∈ ∆(Z) (i.e., in the absence of any learning),
qBR by definition yields optimal expected payoff U(pµ, q). As a result, U(pµ, qBR) gives an upper
bound for the user’s payoff when the platform’s belief is µ. Now, if the platform belief is µ(q̂3) = 1,
then the resulting distribution is a uniform distribution over items Z, and so

max
q∈Q

U(pδq̂3 , q) ⩽ U(pδq̂3 , qBR) =
|Z+|
|Z| =

|Z+|
|ZA|+ |ZB|

.

Similarly, if the platform believes µ(q̂2) = 1, then it will recommend uniformly with probability ε,
and otherwise recommend from ZB, and so

max
q∈Q

U(pδq̂2 , q) ⩽ U(pδq̂2 , qBR) = ε · |Z
+|

|Z| + (1 − ε) · 0 = ε · |Z
+|

|Z| .

Now, by Proposition 5.1, playing any non-degenerate strategy (i.e., q for which maxZ q(B =
1|Z) > 0) will lead the platform to converge to a point mass belief. The naive strategy qBR will
lead to the platform having limiting belief q̂1, for which the user’s payoff is

U(pδq̂1 , qBR) = ε · |Z
+|

|Z| + (1 − ε) · |Z
+|

|ZA|
.

This is clearly greater than the other two upper bounds, and so if the user plays a non-degenerate
strategy, qBR is the best option. The proof concludes by noting that the degenerate strategy yields
a utility of zero.
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A.3 Proof of Proposition 5.3

Proposition 5.3. Consider the setting described in Section 5.1. The platform’s payoff is as least as high
when the user is strategic as when the user is naive.

Proof. Let µS be the platform’s long-run belief when the user is strategic, and let µBR be the plat-
form’s long-run belief when the user is naive. Note that Proposition 5.1 implies that these beliefs
exist and are unique for qBR and for any non-degenerate q∗. Now, if the user is incentivized to
strategize, it must be that U(pµBR , qBR) ⩽ U(pµS , q∗). In other words,

∑
Z∈Z

pµS(Z)EqS(·|Z)[U(Z, B)] ⩾ ∑
Z∈Z

pµBR(Z)EqBR(·|Z)[U(Z, B)]

∑
Z∈Z

pµS(Z)qS(B = 1|Z)a(Z) ⩾ ∑
Z∈Z

pµBR(Z)qBR(B = 1|Z) · a(Z)

∑
Z∈Z+

pµS(Z)qS(B = 1|Z)− ∑
Z∈Z\Z+

pµS(Z)qS(B = 1|Z) ⩾ ∑
Z∈Z+

pµBR(Z)qBR(B = 1|Z)

∑
Z∈Z

pµS(Z)qS(B = 1|Z)− ∑
Z∈Z

pµBR(Z)qBR(B = 1|Z) ⩾ 2 ∑
Z∈Z\Z+

pµS(Z)qS(B = 1|Z)

A.4 Proof of Proposition 5.4

Proposition 5.4. Consider the setting described in Section 5.1, and the counterfactual algorithm pCF given
by (8). For any content partitioning (ZA,ZB) where |ZA|, |ZB| ⩾ 4, there exists an affinity function a(Z)
(see (4)), constants γ > 0 (see (5)) and ε > 0 (see (6)) and a function TOXICITY : Z → {α, 1} such that,
by applying the strategy above:

(a) the platform correctly predicts its own utility under p, i.e., V̂(p, Q̂) = V∗
(p, Q̂);

(b) the platform thinks its payoff will decrease if it switches to algorithm pCF, i.e., V̂(pCF, Q̂) < V∗
(p, Q̂);

(c) in reality, the platform’s payoff will increase if it switches to pCF, i.e., V⋆
(pCF, Q̂) > V⋆

(p, Q̂).

Proof. For convenience, assume |ZB| is even (otherwise, the same proof holds but requires us
to keep track of a rounding error). We will define a(Z) to be +1 on a half of ZB and −1 on
the other half, and +1 on 3/4 of ZA (and −1 on the remaining 1/4). By construction, defining
Z+ = {Z ∈ Z : a(Z) = 1},

|ZA ∩ Z+|
|ZA|

⩾
3
4
>

1
2
=

|ZB ∩ Z+|
|ZB|

.

Using an identical argument to the one used in Appendix A.2, we see that when ε is sufficiently
small, a strategic user will restrict their clicks to Z+ ∩ Z1, in order to induce a platform belief of
q̂1. For some small α > 0 (to be defined later), consider the toxicity function

TOXICITY(Z) =

{
α if Z ∈ ZA ∩ Z+ or ZB \ Z+

1 otherwise.

In the remainder of the proof, we introduce the following notation for convenience:

n1 = |ZA ∩ Z+|, n2 = |ZA \ Z+| n3 = |ZB ∩ Z+|, n4 = |ZB \ Z+|.
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Platform’s current payoff. The platform’s current payoff under the user’s strategic behavior is

V∗
(p0, Q̂) = ε · n1

n1 + n2 + n3 + n4
+ (1 − ε) · n1

n1 + n2
. (17)

Note that the platform’s predicted payoff under p0 is given by

V̂(p0, Q̂) = (1 − γ)

[
ε · n1 + n2

n1 + n2 + n3 + n4
+ (1 − ε),

]
,

and by setting γ appropriately we can make these two quantities equal (intuitively, since ε is small,
1 − γ roughly corresponds to the fraction of ZA that the user actually engages with, i.e., n1

n1+n2
).

Platform’s predicted payoff. We now derive the platform’s predicted payoff V̂(p1, Q̂)—the plat-
form believes that the user’s strategy is q̂1, and so its predicted payoff is

V̂(p1, Q̂) = (1 − γ)

[
ε · αn1 + n2

αn1 + n2 + n3 + αn4
+ (1 − ε)

]
.

From this, it is straightforward to show that

V̂(p1, Q̂)− V∗
(p0, Q̂) = V̂(p1, Q̂)− V̂(p0, Q̂)

= (1 − γ) · ε ·
[

αn1 + n2

αn1 + n2 + n3 + αn4
− n1 + n2

n1 + n2 + n3 + n4

]

< 0,

where in the last inequality we use the fact that:

n2

n1 + n2
⩽

1
4
<

1
2
=

n3

n3 + n4

n2n3 + n2n4 < n1n3 + n2n3

0 > (1 − α)(n2n4 − n1n3)

= (αn1 + n2)(n1 + n2 + n3 + n4)− (n1 + n2)(αn1 + n2 + n3 + αn4).

This sequence of calculations proves the result (b).

Platform’s true payoff. We now consider the platform’s true payoff when the user is strategic.
Now, we use the fact that (a) if the user’s behavior is non-degenerate, the platform’s belief will
converge to a single µ(q̂i) = 1; (b) for a fixed belief µ, the maximum user payoff is upper bounded
by the payoff attained by qBR.

Thus, under the toxicity function above,

max
q∈Q

U(p
δq̂1
1 , q) ⩽ U(p

δq̂1
1 , qBR) = ε · αn1 + n3

αn1 + n2 + n3 + αn4
+ (1 − ε) · αn1

αn1 + n2

max
q∈Q

U(p
δq̂2
1 , q) ⩽ U(p

δq̂2
1 , qBR) = ε · αn1 + n3

αn1 + n2 + n3 + αn4
+ (1 − ε) · n3

n3 + αn4

max
q∈Q

U(p
δq̂3
1 , q) ⩽ U(p

δq̂3
1 , qBR) =

αn1 + n3

αn1 + n2 + n3 + αn4
.
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Observe that as α → 0,

max
q∈Q

U(p
δq̂1
1 , q) → ε · n3

n2 + n3
and max

q∈Q
U(p

δq̂3
1 , q) → n3

n2 + n3
. (18)

Also, if the user plays the strategy q†(B = 1|Z) = 1{Z ∈ Z+ ∩ ZB}, the platform will converge to
µ(q̂2) = 1 (by Proposition 5.1), and so the user’s utility will be

U(p
δq̂2
1 , q†) = ε · n3

αn1 + n2 + n3 + αn4
+ (1 − ε) · n3

n3 + αn4
,

which as α → 0, converges to

U(p
δq̂2
1 , q†) → ε · n3

n2 + n3
+ (1 − ε) >

n3

n2 + n3
= lim

α→0
max
q∈Q

U(p
δq̂3
1 , q).

In particular, by comparing this to (18), there must exist some α > 0 such that

U(p
δq̂2
1 , q†) > max

q∈Q
U(p

δq̂3
1 , q) > max

q∈Q
U(p

δq̂1
1 , q).

This implies that the strategic user will induce the belief µ(q̂2) = 1 when the platform plays the
algorithm p1. Note that of the user strategies that induce µ(q̂2) = 1, the optimal one is clearly q†,
as any strategy that does not set B = 1 for Z ∈ Z+ ∩ ZB would increase its utility by doing so,
and any strategy that does set B = 1 for Z ∈ ZB \ Z+ would needlessly incur a penalty.

Thus, to conclude the proof, observe that

V∗
(p1, Q̂) = V(p

δq̂2
1 , q†)

= ε · n3

αn1 + n2 + n3 + αn4
+ (1 − ε) · n3

n3 + αn4
,

which, as α → 0 and ε → 0, converges to 1. Contrasting this to (17) makes it clear that by choosing
α and ε small enough, we get that V∗

(p1, Q̂) > V∗
(p0, Q̂).

A.5 Proof of Proposition 5.5

Proposition 5.5. Consider the setting described in Section 5.1. For any partitioning (ZA,ZB) of Z there
exists an affinity function a(Z) (see (4)), constants γ > 0 (see (5)) and ε > 0 (see (6)), and a user model q̂4
such that when q̂4 is added to hypothesis class Q̂, the platform’s payoff under strategization decreases.

Proof. Define the affinity function a(Z) to be +1 on half of the items in ZA (rounding down if |ZA|
is not even), and on a single item from ZB.

Recall from Proposition 5.2 and its proof in Appendix A.2 that a strategic user will try to induce
the belief µ(q̂1) = 1 from the platform by restricting their clicks to ZA ∩Z+ (where recall that Z+

is the subset of Z on which a(Z) = 1). For some η > 0 to be defined later, define

q̂4(B = 1|Z) = 1 − η ∀ Z ∈ Z

Now, consider a strategic user in reponse to the platform strategy (p0, Q̂ ∪ {q̂4}). The user is faced
with a choice between three cases:

(A) Force the platform to converge to q̂3 or q̂4. These are indistinguishable from the user’s per-
spective as in either case, the resulting proposition distribution pµ

0 will converge to a uniform
distribution over Z .
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(B) Induce the platform to converge to µ(q̂1) = 1, in which case the limiting proposition distri-
bution is a mixture of the uniform distribution over Z (with probability ε) and the uniform
distribution over ZA (with probability 1 − ε).

(C) Conversely, induce the platform to converge to µ(q̂2) = 1.

Note that playing naively results in case (A), and so the user’s utility in that case is both upper and
lower bounded by |Z+|/|Z|. Meanwhile, since we constructed |ZB ∩ Z+| = 1, the user’s utility
in case (C) is upper bounded by 1/|ZB|. We can thus remove case (C) from consideration.

It thus remains to bound the utility of Case (B). In the absence of q̂4, the user can restrict their
clicks to ZA ∩ Z+ and guarantee that the platform converges to q̂1 (see Appendix A.1). In the
presence of q̂4, however, we argue that the only strategy that guarantees the platform converging
to q̂1 will also result in low user payoff.

To show this, suppose there exists a strategy q for which the platform converges to q̂1. If η < γ,

KL(q||q̂1)− KL(q||q̂4)

= EZ∼pµ

[
EB∼q(·|Z)

[
log
(

q(B|Z)
q̂1(B|Z)

)
− log

(
q(B|Z)
q̂4(B|Z)

)]]

= EZ∼pµ

[
EB∼q(·|Z)

[
log
(

q̂4(B|Z)
q̂1(B|Z)

)]]

= EZ∼pµ

[
EB∼q(·|Z)

[
log
(

q̂4(B|Z)
q̂1(B|Z)

)] ∣∣∣∣Z ∈ ZA

]
· PZ∼pµ(Z ∈ ZA)

+ EZ∼pµ

[
EB∼q(·|Z)

[
log
(

q̂4(B|Z)
q̂1(B|Z)

)] ∣∣∣∣Z ∈ ZB

]
· PZ∼pµ(Z ∈ ZB)

= EZ∼pµ

[
q(B = 1|Z) · log

(
1 − η

1 − γ

)
+ q(B = 0|Z) · log

(
η

γ

) ∣∣∣∣Z ∈ ZA

]
· PZ∼pµ(Z ∈ ZA)

+ EZ∼pµ

[
log (η)

∣∣∣∣Z ∈ ZB

]
· PZ∼pµ(Z ∈ ZB)

⩾
(

log (1 − η) + EZ∼pµ

[
q(B = 0|Z)

∣∣Z ∈ ZA
]
· log

(
η

γ

))
· P(Z ∈ ZA) + log (η) .

Thus, if

EZ∼pµ

[
q(B = 0|Z)

∣∣Z ∈ ZA
]
>

(
− log(η)

P(Z∈ZA)
− log (1 − η)

)

log
(

η
γ

) ,

then KL(q||q̂1)− KL(q||q̂4) > 0, and q̂4 thus dominates q̂1 at belief µ. Now, since P(Z ∈ ZA) is
lower bounded by ε|ZA|/|Z|, we can set γ small so that the above expression evaluates to 1

|Z| .
Also, note that since none of the user models distinguish between different elements within the

partition ZA, the expectation on the left is equivalent to the unconditional expectation EZ∼Unif(ZA)[·].
Putting these two observations together, we have that if

1
|ZA| ∑

Z∈ZA

q(B = 0|Z) > 1
|Z| , (19)

then q̂4 strictly dominates q̂1 at all beliefs µ, and the platform will converge to µ(q̂4) = 1. Since we
have by assumption that the platform converges to µ(q̂1) = 1, it must be that (19) is false, and so

1
|ZA| ∑

Z∈ZA

q(B = 1|Z) ⩾ 1 − 1
|Z| .
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By construction (Z+ containing exactly half of ZA),

1
|ZA ∩ Z+| ∑

Z∈ZA∩Z+

q(B = 1|Z) ⩾ 1 − 2
|Z| .

We now argue that with such a strategy, the user can attain no more than 2
|Z| utility. Since none

of the user models distinguish between elements within ZA, a coupling argument shows that
for every element Z : a(Z) = 1 that the user clicks on with probability δ, there is at least one
other element with a(Z′) = −1 that the user clicks on with probability δ(1 − 2

|Z| ) and that is
recommended with equal probability to Z.

We have thus shown that the maximum attainable payoff from case (B) is 2/|Z|, which is lower
than the guaranteed payoff from case (A) of |Z+|/|Z|. A strategic user will thus choose to play
naively, which in fact lowers platform payoff. We have thus shown that both case (B) and case (C)
result in low payoffs for the user, and so the user will choose case (A). The proof concludes by
observing that platform’s payoff under case (A) decreases from the original strategic user.
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B Omitted Proofs: Main Results

B.1 Proof of Proposition 6.9

Proposition 6.9. Consider a platform strategy (p, Q̂) and suppose that U(B, Z) has a unique maximizer
in B for all Z. For a user strategy q, let Ṽ(q) be the platform’s worst-case limiting payoff,

Ṽ(q) := min
µ∈∆(S∞(q,p,Q̂))

V(p(·; µ), q), ∀q ∈ Q, (11)

where S∞ is defined in Definition 6.7. Then, user strategization strictly improves the platform’s worst-case
limiting payoff if

Ṽ

(
arg max

q∈Q
min

µ∈∆(S∞(q,p,Q̂))
U(p(·; µ), q)

)
> Ṽ

(
arg max

q∈Q
min

µ∈∆(Q̂)
U(p(·; µ), q)

)
. (12)

The same is true if the min in (11) is swapped out for a max.

Proof. Note that the left-hand side of (12) is exactly the platform’s payoff under a strategic user,
and so it only remains to show that the right-hand side corresponds to the platform’s payoff under
a naive user. First, by the min-max inequality,

max
q∈Q

min
µ∈∆(Q̂)

U(p(·; µ), q) ⩽ min
µ∈∆(Q̂)

max
q∈Q

U(p(·; µ), q)

⩽ min
µ∈∆(Q̂)

U(p(·; µ), qBR),

and so
qBR ∈ arg max

q∈Q
min

µ∈∆(Q̂)
U(p(·; µ), q).

Now, suppose q ̸= qBR satisfies

q ∈ arg max
q∈Q

min
µ∈∆(Q̂)

U(p(µ; ·), q).

Since q ̸= qBR and U has a unique maximizer B∗(Z) for each Z ∈ Z , there must exist some Z0 ∈ Z
for which q(·|Z0) ̸= 1{B∗(Z0)}. Define

q′(·|Z) =
{

q(·|Z) if Z ̸= Z0

1{B∗(Z0)} otherwise.

Clearly, q′ attains the same payoff U as q for any Z ̸= Z0, and when Z = Z0, q′ attains better payoff
than q. If there exists a µ such that p(Z0; µ) > 0 we have thus reached a contradiction, and other-
wise Z0 will never by played by the platform, and so user actions under q are indistinguishable to
the platform from user actions under qBR.
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B.2 Proof of Proposition 6.13

Proposition 6.13. Consider a given platform strategy (p, Q̂) and platform payoff function V. Suppose
that Q̂ is an ε-net (Definition 6.12) for some sufficiently small ε, that p(·; µ) has full support for all µ, and
that Assumption 6.4 holds. Define ζ as the maximum gap in predicted platform payoff, i.e.,

ζ(p′) = max
q̂1,q̂2∈Q

V(p′(·; δq̂1), q̂1)− V(p′(·; δq̂2), q̂2).

Further assume that there exists β ⩾ α ⩾ 0 such that α ⩽ Varp(·;µ)×q[V(B, Z)] ⩽ β for any belief µ and
user strategy q. Then, for any ε0, ε1 > 0, there exists a pCF and U such that dP (p, pCF) ⩽ ε0, and and

min
µ∈S∞(q,p)

∣∣∣V̂(pCF, µ)− V⋆
(pCF)

∣∣∣ ⩾
√

ζ(pCF)2 − 4(β − α)− ε1. (15)

Proof. Now, we define q̂1 and q̂2 as the lowest and highest attainable platform payoff by a user
who chooses a strategy q̂ ∈ Q̂, i.e.,

q̂1 = arg max
q̂∈Q̂

V(p(·; δq̂), q̂), q̂2 = arg min
q̂∈Q̂

V(p(·; δq̂), q̂).

Note that for our bound to meaningful, we must have that

γ :=
V(p(·; δq̂1), q̂1)− V(p(·; δq̂2), q̂2)

4
− (β − α) > 0,

and so we assume that this inequality holds for the remainder of the proof. Now, recall that the
payoff function V is scaled so that 0 ⩽ V(B, Z) ⩽ 1. For some constant c ∈ [0, 1] to be set later, let

U(B, Z) = (V(B, Z)− c)2,

so that for any belief µ and user strategy q,

U(pµ, q, c) = Var(B,Z)∼pµ×q[V(B, Z)] +
(
V(pµ, q)− c

)2 ,

where we make the dependence on the unset constant c explicit for notational convenience. In
turn, the function that the strategic user aims to maximize is

Ũ(q, c) := min
µ∈S∞(q,p,Q̂)

U(pµ, q).

When q = q̂ ∈ Q̂ and p(·; µ) has full support for all µ, Ũ(q, c) simplifies to

Ũ(q̂, c) := U(p(·; δq̂), q̂).

We now prove a few lemmata that will be useful later in the proof. First, we show that our con-
dition on the loss landscape of V suffices to show a similar condition for the loss landscape of U:

Lemma B.1. For any proposition distribution r ∈ ∆(Z), any fixed user strategy q, and any ε > 0, there
exists a distribution r′ ∈ ∆(Z) so that W1(r, r′) ⩽ ε and δr,q(c) := U(r, q, c)− U(r′, q, c) ̸= 0 almost
everywhere (with respect to c).
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Proof. We can use Assumption 6.4 to find a distribution r′ ∈ ∆(Z) such that d(r, r′) ⩽ ε and
δ := V(r′, q)− V(r, q) ̸= 0. Then, note that U(r, q, c) = U(r′, q, c) if and only if

Var(B,Z)∼r×q[V(B, Z)] + (V(r, q)− c)2 = Var(B,Z)∼r′×q[V(B, Z)] + (V(r′, q)− c)2

Var(B,Z)∼r×q[V(B, Z)]− Var(B,Z)∼r′×q[V(B, Z)] = 2δ(V(r, q)− c) + δ2,

and in particular, if and only if

c = V(r, q)− 1
2δ

(
Var(B,Z)∼r×q[V(B, Z)]− Var(B,Z)∼r′×q[V(B, Z)]− δ2

)
,

which is a measure-zero set.

Next, we show that given a collection of proposition distributions {r1, . . . rm} corresponding
to a set of user models {q̂1, . . . , q̂m} such that ri is ε0-close to p(·; δq̂i), we can construct a new
algorithm p′ that is 2ε0-close to p such that p′ satisfies the regularity conditions in Assumption 6.3,
and p′(·; δq̂i) = ri for all i ∈ [m].

Lemma B.2. Given an algorithm p satisfying Assumption 6.3, a collection of proposition distributions
{r1, . . . rm}, and a set of user models {q̂1, . . . , q̂m} such that

W1(p(·; δq̂i), ri) ⩽ ε0 ∀ i ∈ [m],

there exists an algorithm p′ such that dP (p, p′) ⩽ 2ε0 and

p(·; δq̂i) = ri∀ i ∈ [m].

Proof. By Assumption 6.3, we know that for all Z ∈ Z , p(Z; µ) is continuous in µ around point
mass beliefs. This continuity also implies continuity in Wasserstein distance. Thus, there exists a
single constant δ such that for any i ∈ [m],

d(δq̂i , µ) < δ =⇒ W1(p(·; δq̂), p(·; µ)) ⩽ ε0,

where d(·, ·) is the same distance metric with respect to which Assumption 6.3 (ii) holds. Then,
define the new algorithm

p′(Z; µ) =

{
ri if d(δq̂i , µ) < δ

p(Z; µ) otherwise.

Clearly, this algorithm satisfies p(·; δq̂i) = ri∀ i ∈ [m]. Furthermore, it satisfies the continuity
condition since it is actually constant in the neighborhood of each point mass belief δq̂. Finally,

dP (p, p′) = sup
µ∈∆(Q̂)

W1(p(·; µ), p′(·; µ))

= max
i∈[m]

sup
d(µ,δq̂i )<δ

W1(p(·; µ), ri)

⩽ max
i∈[m]

sup
d(µ,δq̂i )<δ

W1(p(·; µ), p(·; δq̂i)) +W1(p(·; δq̂i), ri)

⩽ 2ε0,

concluding the proof.
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We now resume the main proof. For any c, we partition the set of user models into

Q̂+(c) = {q̂ ∈ Q̂ : V(p(·; δq̂), q̂) > c},

Q̂−(c) = {q̂ ∈ Q̂ : V(p(·; δq̂), q̂) < c},

Q̂=(c) = {q̂ ∈ Q̂ : V(p(·; δq̂), q̂) = c}.

For any value of c, we define the functions

M+(c) = max
q̂∈Q̂+(c)

Ũ(q̂, c), M−(c) = max
q̂∈Q̂−(c)

Ũ(q̂, c), M(c) = max
q̂∈Q̂

Ũ(q̂, c),

then let
Q∗(c) := arg max

q̂∈Q̂
Ũ(q, c)

be the set of possible strategies for a strategic user, assuming they play according to one of the
user models q̂ ∈ Q̂. Observe that for any q̂ ∈ Q∗(c),

β + (V(p(·; δq̂), q̂)− c)2 ⩾ Ũ(q̂, c)

⩾ max
{

Ũ(q̂1), Ũ(q̂2),
}

⩾ α + max





(
max
q̂∈Q̂

V(pδq̂ , q̂)− c

)2

,

(
min
q̂∈Q̂

V(pδq̂ , q̂)− c

)2




⩾ α +

(
maxq̂∈Q̂ V(pδq̂ , q̂)− minq̂∈Q̂ V(pδq̂ , q̂)

)2

4

(V(p(·; δq̂), q̂)− c)2 ⩾

(
maxq̂∈Q̂ V(pδq̂ , q̂)− minq̂∈Q̂ V(pδq̂ , q̂)

)2

4
− (β − α)

= γ > 0. (20)

In particular, this implies that q̂ ̸∈ Q̂=(c), and thus

M(c) = max{M+(c), M−(c)}.

Now, as c increases, the set Q̂−(c) grows and each Ũ(q̂, c) is non-decreasing for each q̂ ∈ Q̂−(c),
and so M −( c) is non-decreasing in c. Similar logic shows that M+(c) is non-increasing in c.
Furthermore, by definition, M+(c) > M−(c) when c = 0 and M−(c) > M+(c) when c = 1. We
thus let c0 = inf{c : M−(c) ⩾ M(c)}, and let c1 = sup{c : M+(c) ⩾ M(c)}.

Lemma B.3. There exists a constant ψ > 0 such that the function M−(c) is uniformly continuous over
the interval [c0 − ψ, 1], and M+(c) is uniformly continuous over [0, c1 + ψ]

Proof. We start by considering M−(c). For any ψ, the interval [c0 − ψ, 1] is compact and so by
the Heine-Cantor theorem it suffices to show that M−(c) is pointwise continuous at each c in the
interval. Let P ⊂ R be the (finite) set {V(p(·; δq̂), q̂) : q̂ ∈ Q̂}. Now, for any c in the interval, one
of the following two cases must hold:

(A) c ̸∈ P, i.e., there does not exist a q̂ ∈ Q̂ whose corresponding platform payoff is equal to c.
In this case, we can always find a δ small enough such that for all c′ ∈ (c − δ, c + δ), the set
Q̂−(c′) = Q̂−(c) does not change (by the finite nature of Q̂). We then use the continuity
of Ũ(q̂, c) in c for each q̂ ∈ Q̂, and the fact that a maximum of continuous functions is
continuous to show that M− is continuous at c.
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(B) c ∈ P, i.e., there exists at least one user model in Q̂ whose corresponding payoff is c (in other
words, Q̂=(c) ̸= ∅). Let q̂ ∈ Q̂=(c) be any such model. Define c̄ = c + 2ψ, so that c̄ > c0.
We will first show by contradiction that there exists a user model q̂′ ∈ Q̂−(c̄) such that
Ũ(q̂, c̄) < Ũ(q̂′, c̄). In particular, if this were not the case, we would have Ũ(q̂, c̄) = M−(c̄),
and since c̄ > c0 we would have that Ũ(q̂, c̄) ⩾ M(c̄), and thus by (20),

(V(p(·; δq̂), q̂)− c̄)2 = γ > 0.

By supposition, V(p(·; δq̂), q̂) = c. Thus, by setting ψ small enough (i.e., as c̄ → c), we reach
a contradiction. We can also set ψ small enough so that Q̂−(c̄) = Q̂−(c) ∪ Q̂=(c). In this
case, the logic above applies to any q̂ ∈ Q̂=(c), and so it must be that for some q̂′ ∈ Q̂−(c),

η := min
q̂∈Q̂=(c)

(
Ũ(q̂′, c̄)− Ũ(q̂, c̄)

)
> 0,

For the same q̂′ (and again, any q̂ ∈ Q̂=(c)), and any c′ ∈ (c, c̄),

Ũ(q̂′, c′)− Ũ(q̂, c′) ⩾ η + (Ũ(q̂′, c̄)− Ũ(q̂′, c′))− (Ũ(q̂, c̄)− Ũ(q̂, c′)).

Observing that

Ũ(q̂′, c̄)− Ũ(q̂′, c′) = 2(c̄ − c′)(V − c) + (c̄ − c′)2

= 4ψ(V − c) + 4ψ2,

we can again set ψ small enough so that Ũ(q̂′, c′) > Ũ(q̂, c′). As a result, we have shown that
for any c′ ∈ (c, c̄), the maximizer corresponding to M−(c′) is not a member of Q̂=(c), i.e.,

arg max
q̂∈Q̂−(c′)

Ũ(q̂, c′) ∩ Q̂=(c) = ∅.

Now, there exists a δ such that for all c′ ∈ [c − δ, c + δ],

Q̂−(c′) =

{
Q̂−(c) if c′ < c
Q̂−(c) ∩ Q̂=(c) if c′ > c,

and in both cases arg maxq̂∈Q̂−(c′)
⊂ Q̂−(c), and thus we can use continuity of Ũ(q̂, c) in c.

The same logic implies that M+(c) is uniformly continuous on the interval [0, c1 + ψ].

Note that by definition of c1, and because c1 + ψ > c1, it must be that M+(c1 + ψ) < M(c1 + ψ)
(otherwise c1 would not be an upper bound on the set of which it is the sup), which means that
M−(c1 + ψ) = M(c1 + ψ), which means that c1 + ψ ⩾ c0. Conversely, c0 − ψ ⩽ c1, and thus [c0 −
ψ, c1 + ψ] is a well-defined interval on which both M−(c) and M+(c) are uniformly continuous.

Consider the function h(c) := M+(c)− M−(c) on the interval [c0 −ψ, c1 +ψ]. At the beginning
of the interval, h(c) > 0, while at the end of the interval h(c) < 0. By the intermediate value
theorem, there exists c∗ ∈ [c0 − ψ, c1 + ψ] such that h(c∗) = 0.

Now, Q̂∗(c∗) is surely not a singleton, as it must contain at least one element q̂+ ∈ Q̂+(c∗) and
one element q̂− ∈ Q̂−(c∗). We apply the following procedure to each q̂ ∈ Q̂∗(c∗):
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1. Use Lemma B.1 to find a distribution rq̂ ∈ ∆(Z) such that W1(rq̂, p(·; δq̂)) < ε0, and U(rq̂, q̂) ̸=
U(p(·; δq̂), q̂). For simplicity, we assume that c∗ is not one of the finite number of values of c
such that we cannot apply Lemma B.1—if this is not the case, we can simply perturb c∗ by
some sufficiently small amount so as not to affect the calculations in the rest of the proof.

2. If U(rq̂, q̂) > U(p(·; δq̂), q̂), terminate.

3. Otherwise, continue to the next q̂ ∈ Q̂∗(c∗).

4. If that is the last q̂ ∈ Q̂∗(c∗), terminate and do not perform Step 1.

At the end of the procedure, we will have some q̂∗ ∈ Q̂∗(c∗) such that q̂∗ is strictly preferred by
the user to any other q̂ ∈ Q̂∗(c∗) (and thus, to any q̂ ∈ Q̂) under the constructed proposition
distributions. In particular, we can use Lemma B.2 to construct a new algorithm p′ such that

dP (p, p′) < ε0 and arg max
q̂∈Q̂

U(p′(·; δq̂), q̂) = {q̂∗}.

Without loss of generality, suppose that q̂∗ ∈ Q̂−(c∗).
Now, let ε2 > 0 be a small enough constant to ensure that Q∗(c∗ − ε2) ⊂ Q+(c∗) (note that

Q∗(c∗ − ε2) ⊂ Q+(c∗ − ε2) for all ε2 > 0; then, by setting ε2 small enough we can also ensure that
Q+(c∗ − ε2) = Q+(c∗)). Thus, we can set ε2 small enough to ensure the following two conditions:

(a) arg maxq̂∈Q̂ U(p(·; δq̂), q̂) ⊂ Q̂+(c∗), and

(b) arg maxq̂∈Q̂ U(p′(·; δq̂), q̂) ⊂ Q̂−(c∗).

In particular, in combination with (20), these two conditions imply that

(a) For all q̂∗(p) ∈ arg maxq̂∈Q̂ U(p(·; δq̂), q̂), we have V(p(·; δq̂), q̂) ⩾ c∗ +
√

γ′

(b) For all q̂∗(p′) ∈ arg maxq̂∈Q̂ U(p′(·; δq̂), q̂), we have V(p(·; δq̂), q̂) ⩽ c∗ −√
γ′,

where we define

γ′ :=
maxq̂∈Q̂ V(p′(·; δq̂), q̂)− minq̂∈Q̂ V(p′(·; δq̂), q̂)

4
− (β − α) > 0,

which can be made arbitrarily close to γ by setting ε0 small enough. Putting these two together,
we get that ∣∣∣V(p(·; δq̂∗(p′)), q̂∗(p′))− V(p(·; δq̂∗(p)), q̂∗(p))

∣∣∣ ⩾ 2
√

γ′.

To conclude the proof, we show that for a sufficiently granular ε-net, the user does not gain
much by deviating from the set of user models Q̂.

Lemma B.4. Fix any any user strategy q and any full-support algorithm p, and suppose that Q̂ is an ε-net
hypothesis class for some ε ∈ (0, 1

|B| ). Then for every user model q̂ ∈ Q̂,

q̂ ∈ S∞(q, p, Q̂) =⇒ max
Z∈Z

KL(q(·|Z), q̂(·|Z)) ⩽ log
(

1
1 − |B| · ε

)
,

and as a result, Ũ(q̂, c) ⩾ Ũ(q, c)−
√
− 1

2 log(1 − |B|ε).
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Proof. Note that because Q̂ is the Cartesian product of ∆ε(B) across Z, when p has full support
every element q̂ ∈ S∞(q, p, Q̂) must satisfy

q̂(·|Z) ∈ arg min
pB∈∆ε(B)

KL(q(·|Z), pB) ∀ Z ∈ Z .

In particular, we can find a q̂′ that strictly dominates any q̂ that violates this condition by swapping
its behavior at violating values of Z. Now, for ν = ε · |B|, let qν be a mixture of q with the uniform
distribution over B, i.e.,

qν(·|Z) := ν · 1
|B| + (1 − ν) · q(·|Z).

By definition of the ε-net, there must be some q̂i such that q̂i(B|Z) ⩾ qν(B|Z)− ε, and in turn,

KL(q(·|Z), q̂i(·|Z)) ⩽ EB∼q(·|Z)

[
log

(
q(·|Z)

ν · 1
|B| + (1 − ν) · q(·|Z)− ε

)]
= log

(
1

1 − ν

)
.

Next, observe that the function U(B, Z) = (V(B, Z)− c)2 is bounded in [0, 1], and so

Ũ(q, c) = min
µ∈S∞(q,p,Q̂)

U(p(·; µ), q)

⩽ U(p(·; δq̂), q) (since q̂ ∈ S∞)

⩽ U(p(·; δq̂), q̂) + max
Z∈Z

TV(q̂(·|Z), q(·|Z)) (since U is bounded in [0, 1])

⩽ Ũ(q̂, c) +

√
1
2

log
(

1
1 − ν

)
,

where above we used the definition of total variation distance, as well as the fact that for any two

probability distributions A and B, TV(A, B) <
√

1
2 KL(A, B) by Pinsker’s inequality.

For any ε1 > 0, we can use Lemma B.4 and set

ε =
1 − exp

(
−ε2

1

)

|B|
to get that Ũ(q̂, c) ⩾ Ũ(q, c)− ε1. Thus, if q̂ ∈ S∞(q, p, Q̂) for some strategy q, then q cannot yield
a significantly higher payoff than q̂. This allows us to reduce the case of picking the optimal user
strategy q to picking the optimal user model q̂ ∈ Q̂. That is, if the user strictly prefers a user model
q̂∗ to any other user model, we can set ε sufficiently small so that the user strictly prefers their
globally stable set to be {q̂∗}, which entails playing a strategy close to q̂∗.

Thus, the smallest possible gap between the platform’s predicted payoff under p′ and its true
payoff under p′ is given by

min
µ∈∆({q̂∗(p)})

∣∣∣V̂(p′, µ)− V∗
(p′)

∣∣∣ =
∣∣∣V̂(p′, δq̂∗(p))− V(p′(·; δq̂∗(p′), q∗(p′)))

∣∣∣

=
∣∣∣V(p′(·; δq̂∗(p)), q̂∗(p))− V(p′(·; δq̂∗(p′), q∗(p′)))

∣∣∣

⩾ 2
√

γ′ −
∣∣∣V(p′(·; δq̂∗(p′), q̂∗(p′)))− V(p′(·; δq̂∗(p′), q∗(p′)))

∣∣∣

⩾ 2
√

γ′ − ε1,

where the last inequality follows from Lemma B.4.
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B.3 Proof of Proposition 6.14

We prove this result using a highly oversimplified example in order to illustrate the main principle
behind the proof. First, let the user’s payoff function be U(B, Z) = V(B, Z) + λ · g(Z), where
V(B, Z) is the platform payoff and g(Z) is a function to be specified later (along with the scalar λ).
Even without specifying g(Z), it is clear that for any Z ∈ Z , qBR(·|Z) = arg maxB∈B V(B, Z).

Now, find the following two user models q̂1 and q̂2:

q̂1 = arg min
q̂∈Q̂

KL
[

p(·; δq̂)× qBR, p(·; δq̂)× q̂
]

,

q̂2 = arg max
q̂∈Q̂

W
[
p(·; δq̂1), p(·; δq̂)

]
.

(In the literature, q̂1 is referred to as a Berk-Nash equilibrium [EP16; FII20].) Consider the distri-
butions p(·; δq̂1) and p(·; δq̂2), and define

g(·) := arg max
∥ f ∥L⩽1

EZ∼p(·;δq̂2 )
[ f (Z)]− EZ∼p(·;δq̂1 )

[ f (Z)],

where ∥ f ∥L represents the Lipschitz constant of the function f : Z → R.
By construction of g, we have that for any user strategy q,

U(p(·; δq̂2), q)− U(p(·; δq̂1), q) ⩾ λ · W(p(·; δq̂1), p(·; δq̂2))− 1

⩾
λ

2
max
q̂,q̂′∈Q̂

W(p(·; δq̂), p(·; δq̂′))− 1

> 0,

as long as λ > 2
R .

Now, let Q̂1 = {q̂2} and Q̂2 = {q̂2, q̂1}. Under Q̂1, the platform will trivally converge to q̂2
regardless of the user’s behavior, and so the user is incentivized to play according to qBR.

When q̂1 is added to the set of user models, the naive user strategy qBR will lead to the user
model q̂1 never being eliminated from the globally stable set (due to its status as a Berk-Nash
equilibrium for qBR). By construction of the user payoff function, this is always suboptimal for the
user, since δq̂1 will be in ∆(S∞(q, p, Q̂)), and so they will be incentivized to switch to a strategy
that ensures only q̂2 is in the globally stable set.

Since, by assumption, V(B, Z) has a unique maximizer for each Z ∈ Z , the strategic user’s
new strategy must result in strictly lower platform payoff, concluding the proof of the theorem.

Remark B.5. Note that while the example presented in this proof is rather contrived, the principle behind
it is actually quite general. The principle is that the strategic user wants to induce a specific proposition
distribution from the platform, but does not want to stray too far from their best-response behavior. Thus,
they purposefully pick a strategy that the platform misinterprets (in this case, that strategy is just qBR, but
it could be any strategy q∗1). When the platform gets “better” at capturing their behavior by adding a user
model that is close to q∗1 , the user is forced to move even further away from their best-response behavior,
making things worse for the platform.
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B.4 Proof of Proposition 6.15

Proposition 6.15. Suppose that the platform’s strategy (p, Q̂) is such that the hypothesis class Q̂ is an
ε-net (Definition 6.12). Let pCF be a counterfactual algorithm that is well-behaved (Assumption 6.5); then,

max
µ∈∆(S∞(qBR,p))

∣∣∣V̂(pCF, µ)− VBR(pCF)
∣∣∣ ⩽

√
ε

(
(2LP + 1)

√
|B|
)

. (16)

As a result, by using a sufficiently fine ε-net hypothesis class Q̂, the platform can estimate its payoff under
counterfactual algorithms up to arbitrary precision.

Proof. We first restate the two quantities being compared:

V̂(pCF, µ) = Eq̂∼µ

[
V(pCF(·; µ), q̂)

]
.

VBR(pCF) = min
µ∈∆(S∞(qBR,pCF))

V
(

pCF(·; µ), qBR
)

.

Using the triangle inequality,

max
µ∈∆(S∞(qBR,p))

∣∣∣V̂(pCF, µ)− VBR(pCF)
∣∣∣ ⩽ max

µ1,µ2∈∆(S∞(qBR,p))

∣∣∣Eq̂∼µ1

[
V(pCF(·; µ1), q̂)

]
−V

(
pCF(·; µ2), qBR

)∣∣∣

⩽ max
µ1,µ2∈∆(S∞(qBR,p))

∣∣Eq̂∼µ1

[
V(pCF(·; µ1), q̂)−V(pCF(·; µ2), q̂)

]∣∣

+
∣∣∣Eq̂∼µ1

[
V(pCF(·; µ2), q̂)−V

(
pCF(·; µ2), qBR

)]∣∣∣

⩽ max
µ1,µ2∈∆(S∞(qBR,p))

(∣∣∣Eq̂∼µ1

[
V(pCF(·; µ1), q̂)−V(pCF(·; µ2), q̂)

]∣∣∣

+ max
q̂∈S∞(qBR,p)

∣∣∣V(pCF(·; µ2), q̂)−V
(

pCF(·; µ2), qBR
)∣∣∣
)

Note that the second term above is bounded by the maximum total variation distance between q̂
and qBR, which we can bound using Lemma B.4, restated below:

Lemma B.4. Fix any any user strategy q and any full-support algorithm p, and suppose that Q̂ is an ε-net
hypothesis class for some ε ∈ (0, 1

|B| ). Then for every user model q̂ ∈ Q̂,

q̂ ∈ S∞(q, p, Q̂) =⇒ max
Z∈Z

KL(q(·|Z), q̂(·|Z)) ⩽ log
(

1
1 − |B| · ε

)
,

and as a result, Ũ(q̂, c) ⩾ Ũ(q, c)−
√
− 1

2 log(1 − |B|ε).
We can then bound the first term using the well-behavedness condition which implies that

dP (pCF(·; µ1), pCF(·; µ2)) ⩽ LP · Eq̂1∼µ1, q̂2∼µ2

[
max
Z∈Z

TV(q̂1(·|Z), q̂2(·|Z))
]

⩽ LP ·Eq̂1∼µ1, q̂2∼µ2

[
max
Z∈Z

TV(q̂1(·|Z), qBR(·|Z)) + TV(q̂2(·|Z), qBR(·|Z))
]

,

which we can again bound using Lemma B.4. Thus,

max
µ∈∆(S∞(qBR,p))

∣∣∣V̂(pCF, µ)− VBR(pCF)
∣∣∣ ⩽ (2 · LP + 1)

√
1
2

log
(

1
1 − |B| · ε

)
⩽ (2LP + 1) ·

√
|B| · ε,

where the last inequality follows from − log(1 − x) ⩽ 2x for all x ∈ [0, 1
2 ].

50


	Introduction
	Summary of contributions

	Related work
	Model
	Setup
	Examples

	User strategization
	Naive user
	Strategic user

	Stylized Example
	A simple recommender system
	User behavior
	User strategization improves platform payoffs
	User strategization results in unexpected behavior

	User strategization and its discontents
	Preliminaries
	Platforms converge to beliefs that best approximate user in KL-sense
	User strategization can help the platform
	User strategization can cause unexpected behavior
	Changing the algorithm p results in unpredictable payoff
	Expanding  can unexpectedly hurt the platform

	System behavior is more predictable for best-response users

	Trustworthy algorithm design
	Trustworthiness and its effect on the platform
	Elements of trustworthiness
	Reasons why a user may not trust their platform
	Interventions for improving trustworthiness

	Appendix
	 Appendix
	Omitted Proofs: Illustrative Example
	Proof of prop:limitingillustrative
	Proof of prop:illustrativestrathappens
	Proof of prop:illustrativeimproveutility
	Proof of prop:illustrativecfxbad
	Proof of prop:illustrativeexpandomega

	Omitted Proofs: Main Results
	Proof of prop:strathelpsplatform
	Proof of prop:cfp
	Proof of prop:cfomega
	Proof of prop:smoothpBR



