Network Synthetic Interventions

A Causal Framework for Panel Data Under Network Interference

Anish Agarwal, Sarah Cen, Devavrat Shah, and Christina Lee Yu

INFORMS

October 17, 2023

What would have happened if we had done A instead of B?

Example: Public Policy

What types of restrictions should a country adopt for COVID-19?

Potential Outcomes in Panel Data

How would unit *n* respond at time *t* to treatment *a*?

 $Y_{t,n}^{(a)}$

	t = 1	t = 2	t = 3	0 0 0	t = T - 2	t = T - 1	t = T
Unit 1	nothing	stay-at- home	stay-at- home		mask mandate	mask mandate	nothing
Unit 2							

Common Assumption

Stable Unit Treatment Value Assumption

does not affect outcome of another \rightarrow no spillover.

SUTVA: Treatment of one unit

Not if there is **spillover**!

Example: COVID-19 Policies

Whether a person is infected depends on who they live with.

Example: Amazon Product Ranking

Whether an item is purchased depends on what else is shown.

Search result #1 vs #2:

How do other products' discounts affect sale of **T**?

Potential Outcomes Under Spillover

How would unit *n* in graph *G* respond at time *t* to treatments *a*?

Model spillover as **network interference**: $(j,i) \in \mathcal{E} \implies$ unit j's treatment affects unit i's outcome

Related Work

Average treatment effect estimation [Ugander et al. '13, Eckles et al. '17, Sussman & Airoldi '17, Basse & Airoldi '18, Jagadeesan et al. '20, Leung '19, Chin '19, Ma & Tresp '21, Yu et al. '22, Cortez et al. '22]

Panel data [Bertrand et al. '04, Abadie '21, Arkhangelsky et al. '19, Agarwal et al. '20]

Spillover effects or interference [Manski '13, Aronow et al. '17, Sussman & Airoldi '17, Eckles et al. '17, Basse & Airoldi '18, Karwa and Airoldi '18, Bhattacharya et al. '20, Li et al. '21, Bajari et al. '21, Yu et al. '22, Cortez et al. '22]

Network Synthetic Interventions (NSI)

How would unit *n* in graph *G* respond at time *t* to treatments *a*?

 $Y_{t,n}^{(a)}$

- Simple procedure that provides **point estimate and confidence interval**
- Formal results: guarantee **consistency & asymptotic normality** under LF model
- Two validity tests: check important assumption
- Experiment design guarantees $O(\text{poly}(d)/\epsilon^4)$ samples

Estimator: NSI

Network Synthetic Interventions

		traiı	ning perio	od \mathcal{T}_{tr}	 	predic	tion peric	od \mathcal{T}_{pr}	
Unit 1	1	1			 1	1			
Unit 2	0	1			 0	0			
Unit 3	0	0			 0	0			
Unit 4	1	1			 0	0			
Unit 5	1	1			 0	0			

Treatment matrix A

		traiı	ning perio	od \mathcal{T}_{tr}	 	predic	tion peric	od \mathcal{T}_{pr}	
Unit 1	1	1			 1	1			
Unit 2	0	1			 0	0			
Unit 3	0	0			 0	0			
Unit 4	1	1			 0	0			
Unit 5	1	1			 0	0			

Treatment matrix A

		traiı	ning perio	od \mathcal{T}_{tr}		predic	tion peric	od \mathcal{T}_{pr}	
Unit 1	1	1			 1	1			
Unit 2	0	1			 0	0			
Unit 3	0	0			 0	0			
Unit 4	1	1			 0	0			
Unit 5	1	1			 0	0			

Treatment matrix A

Unit 1 1 1 1 1	
Unit 2 0 1 1 1	
Unit 3 0 0 0 0	
Unit 4 1 1 0 0	•••
Unit 5 1 1 1 1	•••

Counterfactual matrix \tilde{A}^{pr}

	traiı	ning perio	od \mathcal{T}_{tr}		predic	tion perio	$\operatorname{pd}\mathcal{T}_{pr}$	
1	1			 1	1			
0	1			 0	0			
0	0			 0	0			
1	1			 ⁰ N	eiĝhl	oorho	ood a	of j
1	1			 0	0			
1	1			 1	1			
0	1			 0	0			
0	0			 0	0			
1	1			 0	0			
1	1			 0	0			
				 γ				

	traiı	ning peri	od \mathcal{T}_{tr}		predic	tion perio	$\operatorname{d}\mathcal{T}_{pr}$	
1	1			 1	1			
0	1			 1	1			
0	0			 ₀ N	eighl	oorho	oo <u>d</u> c	of <u>n</u>
1	1			 0	0			
1	1			 1	1			
1	1			 1	1			
0	1			 1	1			
0	0			 0	0			
1	1			 0	0			
1	1			 1	1			

Counterfactual matrix $ilde{A}^{pr}$

Treatment matrix A

	traiı	ning perio	od \mathcal{T}_{tr}	prediction period \mathcal{T}_{pr}					
1	1			 1	1				
0	1			 0	0				
0	0			 0	0				
1	1			 0	0				
1	1			 0	0				
1	1			 1	1				
0	1			 0	0				
0	0			 0	0				
1	1			 0	0				
1	1			 0	0				
				 γ					

	traiı	ning peri	od \mathcal{T}_{tr}		predic	tion perio	od \mathcal{T}_{pr}	
1	1			 1	1			
0	1			 1	1			
0	0			 ₀ N	eighl	oorho	bog c	of <u>n</u>
1	1			 0	0			
1	1			 1	1			
1	1			 1	1			
0	1			 1	1			
0	0			 0	0			
1	1			 0	0			
1	1			 1	1			

Counterfactual matrix \tilde{A}^{pr}

Treatment matrix A

	traiı	ning perio	od \mathcal{T}_{tr}	prediction period \mathcal{T}_{pr}					
1	1			 1	1				
0	1			 0	0				
0	0			 0	0				
1	1			 0	0				
1	1			 0	0				
1	1			 1	1				
0	1			 0	0				
0	0			 0	0				
1	1			 0	0				
1	1			 0	0				
				 γ					

	traiı	ning perio	od \mathcal{T}_{tr}		predic	tion perio	$\operatorname{d}\mathcal{T}_{pr}$	
1	1			 1	1			
0	1			 1	1			
0	0			 ₀ N	eighl	oorho	oo <u>d</u> c	of <u>n</u>
1	1			 0	0			
1	1			 1	1			
1	1			 1	1			
0	1			 1	1			
0	0			 0	0			
1	1			 0	0			
1	1			 1	1			

Counterfactual matrix $ilde{A}^{pr}$

Treatment matrix A

	0	0	•••	•••	•••	0	 •••	•••	•••
bc	0	1				0	 		
	1	1		•••		1	 		

donor's neighborhood

Step 2: Construct Estimate and Cls

Run PCR on training observations to obtain $\{\hat{\alpha}_j\}_{j \in \text{Donors}}$

Principal Component Regression

$$\widehat{\mathbb{E}}Y_{t,n}^{(a)} = \sum_{j \in \text{Donors}} \widehat{\alpha}_j \cdot (\text{observation of unit } j \text{ at time t})$$

(See paper for confidence interval)

Intuition

Main idea: Potential outcome of *n* can be written as a linear combination of the donors' potential outcomes.

Example:

Formal Results

Model

How would unit *n* in graph *G* respond at time *t* to treatment *a*?

Theoretical Guarantees

Under latent-factor model,

- 1. NSI produces **consistent** point estimates.
- 2. NSI estimates are asymptotically normal.

So, why is this problem hard?

Key enabling assumption: **subspace inclusion**

Do this assumption typically hold?

Not always.

Subspace inclusion assumption: Training treatments are rich enough s.t. we can infer spillover effects from training data.

Experiment Design

Step 1: Connect each unit to its two-hop neighbors to get G'.

Step 2: Color G' such that no adjacent units in G' share a color.

Step 3: For the first \overline{T}' steps, assign 1 to orange units and 0 to all others

Step 4: For the first \overline{T}' steps, assign 1 to blue units and 0 to all others

Step 5: For the first \overline{T}' steps, assign 1 to yellow units and 0 to all others

Step 6: For the first \overline{T}' steps, assign 1 to red units and 0 to all others

Sample complexity

Lemma. Proposed experiment requires $O(d^2)$ training samples. degree of graph

Proposition (informal). Under Gaussian latent factors, consistency and asymptotic normality hold with $O(\text{poly}(d)/\epsilon^4)$ samples.

Significantly better than $O(2^d)$ samples required without latent factor model or experiment design.

Summary

Spillover is common. We model as network interference.

NSI produces point estimates and confidence interval.

Using a latent-factor model & some assumptions, NSI is shown to give **consistent, asymptotically normal estimates**.

We provide two validity tests.

We provide experiment design that has low sample complexity.

Future work: Interventions on graph, test on real data.

Thank you!

shcen@mit.edu