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AI has moved from the lab into 
our homes and institutions
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Consequences of AI

AI intervenes on our private sphere (social media)

It has had profound economic impact (AI supply chains)

It affects our rights & livelihoods (employment algorithms)

It poses societal risks (privacy concerns)

It raises existential questions (AGI)
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So, what?

Change is good! What’s important is that we: 

1. Adjust our understanding of AI to its integration into society
2. Adjust our understanding of society as it integrates AI 

Today: We examine both perspectives 
First, AI supply chains
Then, evidentiary burdens in legal cases against AI decisions
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AI Supply Chains

Joint work at MIT with Aspen K. Hopkins, Andrew Ilyas, Isabella Struckman, Luis Videgaray, and Aleksander Madry

Ongoing work at Stanford with Jonathan Xue, Lindsey Gailmard, Daniel Ho, and Percy Liang
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Outline

I. Introduction to AI supply chains

II. Case Study 1: Algorithmic fairness
A. Theoretical result
B. Experiments

III. Case Study 2: Explanations
A. Theoretical result

B. Experiments
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What are AI supply chains?

AI supply chains are the complex network of AI products and 
services that integrate and produce AI

A canonical example is:

1. Org 1 produces a pre-trained base model M

2. Org 2 curates specialized data D
3. Org 3 fine-tunes M on specialized data D
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A brief historical perspective

A tradition of “outsourcing” ML work developed over decades
Began with data work (WordNet, ImageNet, Mechanical Turk, Scale)

Extended to model training (transfer learning, AutoML)

For the most part, this was gradual until 2022
With ChatGPT, there was an explosion of AI adoption

This led to emergence of complex AI supply chains

Supply chains actually signal healthy growth of AI industry
Improve efficiency, allow for specialization
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Implications

AI supply chains have lots of implications!

Example: Copyright [Lee, Cooper & Grimmelman 2023]
How should credit be attributed?
How should royalties be distributed?

Who has ownership over an AI creation? 
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Implications

AI supply chains have lots of implications!

Example: Supply chain resilience 
If an AI product or service goes down or suddenly decides to change 
how their product/service works, how does it affect others?

How should companies communicate to one another?
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Implications

AI supply chains have lots of implications!

Example: Accountability [Widder & Nafus 2023] 
AI products & services combine in “non-modular” ways
When so many entities contribute, how do we assign responsibility?
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Implications

AI supply chains have lots of implications!

Example: Market concentration  [CHISVM ’23 & ongoing work]
Where is there market concentration in the AI industry?
What are the implications of market concentration?

Previously, published short pieces at MIT.

At Stanford, we’re constructing the multilayered AI supply chain using 
public information (SEC filings, press releases, etc.)
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Implications

AI supply chains have lots of implications!

Example: Machine learning [CHISVM ’25] ß today!
How does the AI supply chain complicate ML development?
How do ML decisions propagate through an AI supply chain?
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AI supply chains are directed graphs

This follows tradition of 
supply chain literature 
long before AI
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AI supply chains are directed graphs

Allows us to study events 
such as ”dispersed control"

We formalize 𝑚-dispersed 
control as when changes to 
ancestors’ operations ℎ!  
within 𝑚 hops of node 𝑣 
cannot be reversed by any 
changes made to ℎ"
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Case Study 1: Upstream decisions 
have downstream consequences
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Motivation

Upstream actors inevitably make design decisions

Downstream actors often have their own design criteria
Downstream actors operate in more specialized industries 

It is impossible for upstream actors to accommodate all possible 
downstream desiderata

How do upstream decisions affect downstream actors?

17



Related work

Unlearning can be reverse [Hu et al. 2024]

Upstream decisions can be “undone” [Salman et al. 2022] 

No fair representation can guarantee fairness under any 
downstream data distribution [Lechner et al. 2021]

Fine-tuning can erase pre-training biases [Kirichenko et al. 2023, 
Qi et al 2023]
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Setup

Input 𝒙 ∈ ℝ#

Base model 𝑓$ 

Fine-tuned model 𝑓"

For simplicity, 𝑓$ and 𝑓" take in 𝒙’s and output scalars
e.g., both take in applicant information and output scores of some sort
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Upstream constraint

Suppose 𝑓! is trained w/ conditional independence (CI) constraint

𝑓! 𝑋 ⊥ 𝑋"	|	𝑍

Conditional independence encompasses various types of structured 
learning (e.g., in causal inference)

It also includes notions of algorithmic fairness, like equalized odds 
(𝑍 = 𝑌) and demographic parity (𝑍 = ∅) where 𝑋" is sensitive attribute
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Suppose base model 𝑓! 𝒙  is obtained by learning {𝜙"} and 𝑤" , where 

𝑓! 𝑥 =)
"#$

%

𝜙" 𝑥 &𝑤"

(Universal function approximator as 𝑁 → ∞ under sufficiently rich basis fns) 

We model fine-tuning as learning linear model 𝑣"  on embeddings

𝑓' 𝑥 =)
"#$

%

𝜙" 𝑥 &𝑣"
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Result

Theorem. Suppose 𝑓! 𝑋 ⊥ 𝑋$	|	𝑍  (w.r.t. some data distribution 𝜇	) and 
𝑓! is trained with 𝐿$ sparsity regularizer on {𝜙"}. If basis functions are 
sufficiently rich and non-redundant*, then

𝔼( 𝑓' 𝑋 |𝑋$ = 𝛽, 𝑍 = 𝛾 = 𝔼( 𝑓' 𝑋 |𝑍 = 𝛾 	 , ∀𝛽, 𝛾

i.e., does not inherit CI, but 1st moment version (though equal sometimes)

*𝑔! 𝛽, 𝛾 = "
"#
𝔼 𝜙$ 𝑋 |	𝑋% = 𝛽, 𝑍 = 𝛾  and assume 𝑔! are linearly independent (as long as 𝑔! ≠ 0)

fine-tuned model
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Experimental setup

Base model 𝑓$ (trained on data 𝐷%)

Model 𝑓" fine-tuned on 𝑓$ (with data 𝐷&)

Model architecture: ResNet18
Dataset: Waterbirds

Common fairness dataset, background = sensitive attribute

Loss: ℒ 𝑓 = BCE 𝑓 + 𝛼𝑅'()*+,-- 𝑓
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Experimental setup

Loss: ℒ 𝑓 = BCE 𝑓 + 𝛼𝑅#$%&'()) 𝑓

We use three types of fairness
Demographic parity: selection rate for groups 1 and 2 is same

Equalized FPR: FPR for groups 1 and 2 is same 

Equalized Odds: FPR and TPR for groups 1 and 2 is same

We vary the base 𝛼*$)( and fine-tuning 𝛼#+ regularization constant

Trained over 10,000 models
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Results (fine-tuning on full network)

Fairness Gap (Eq FPR) Fairness Gap (Demo Parity)

Ac
cu

ra
cy

Fine-tuned w/ Eq FPR Fine-tuned w/ Demo Parity
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Results (fine-tuning on full network)
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Results (fine-tuning on last layer)

Fairness Gap (Eq FPR) Fairness Gap (Demo Parity)

Ac
cu

ra
cy

Fine-tuned w/ Eq FPR Fine-tuned w/ Demo Parity
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Implications

Upstream constraints have downstream consequences!

It’s not straightforward: Downstream models don’t simply inherit 
upstream properties

In fact, you can “undo” or “remove” them …

… but they still leave a footprint 
In our case study, imposed a performance-fairness tradeoff
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Case Study 2: Information 
Propagation in the AI supply chain

31



Motivation

Supply chains spread knowledge across multiple actors. 
What are the implications of dispersed knowledge?

Case study: Explanations of AI decisions
Suppose a company must provide explanations of its model’s decisions
The company’s model is built on an AI supply chain

e.g., it uses the outputs of other models as inputs to its own model

The company must generate end-to-end explanations
e.g., explain why an applicant was rejected (not just how it used other models)

However, the company does not have access to upstream AI models
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Setup

Applicant 𝒙 ∈ ℝ#

Organization 𝑣
Decision 𝑓" 𝒙
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Setup

Organization 𝑣 receives applicant 𝒙
𝑣 sends 𝒙 to 𝑝%	and 𝑝&

𝑝%	processes 𝒙 à sends 𝑧% back
𝑝&	processes 𝒙 à sends 𝑧& back

𝑣 uses 𝑧% and 𝑧& to produce output 𝑓" 𝒙  

𝑣

𝑝)𝑝$
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Setup

Applicant 𝒙 ∈ ℝ#

Organization 𝑣
Decision 𝑓" 𝒙

Organization 𝑣 uses third-party tools, i.e., 

𝑓" 𝒙 = ℎ"(𝒙, 𝑓$! 𝒙 ,… , 𝑓$" 𝒙 )

where 𝑝%, … , 𝑝. are 𝑣’s parents.

35



Locally linear explanations

This type of explanation encompasses popular approaches, such 
as LIME [Ribeiro, Singh, Guestrin SIGKDD’16] 

A 𝛿-explanation at for model 𝑔 at 𝒛 ∈ ℝ/ is 𝐸0(𝑔, 𝒛) where 

𝐸0 𝑔, 𝒛 ∈ argmin
1
	𝔼𝒖 𝑔(𝒛 + 𝛿𝒖) 	− 𝑔 𝒛 −𝑀3𝒖 &

&

where 𝒖 is drawn uniformly at random from unit ball in ℝ/.
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Passing explanations along the AISC

Organization 𝑣 receives applicant 𝒙
𝑣 sends 𝒙 to 𝑝%	and 𝑝&

𝑝%	processes 𝒙 à sends 𝑧% + explanation 𝐸0(𝑓$! , 𝒙)  
𝑝&	processes 𝒙 à sends 𝑧& + explanation 𝐸0(𝑓$# , 𝒙)

𝑣 uses 𝑧% and 𝑧& to produce output 𝑓" 𝒙  
𝑣 uses 𝐸0(𝑓$! , 𝒙) and 𝐸0(𝑓$# , 𝒙) to produce explanation 𝐸0(𝑓" , 𝒙)

𝑣

𝑝)𝑝$
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Passing explanations along the AISC

Organization 𝑣 receives applicant 𝒙
𝑣 sends 𝒙 to 𝑝%	and 𝑝&

𝑝%	processes 𝒙 à sends 𝑧% + explanation F𝐸{0(𝑓$! , 𝒙)  
𝑝&	processes 𝒙 à sends 𝑧& + explanation F𝐸0(𝑓$# , 𝒙)

𝑣 uses 𝑧% and 𝑧& to produce output 𝑓" 𝒙  
𝑣 uses F𝐸0(𝑓$! , 𝒙) and F𝐸0(𝑓$# , 𝒙) to produce explanation F𝐸0(𝑓" , 𝒙)

𝑣

𝑝)𝑝$The issue is: Explanations are usually empirically approximated
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Explanation accuracy degrades

Goal. Downstream org 𝑣 must generate explanation at 𝒙

Supply chain. Ancestor tree of 𝑣 is 𝑚-regular with depth 𝑑

Information sharing. Each ancestor 𝑎 computes an explanation with 
Δ, error (entries are independent with variance 𝜀)

Theorem. There exist mappings ℎ! ∶ ancestors	𝑎  such that 

𝔼{5$} F𝐸0 𝑓" , 𝒙 − 𝐸0 𝑓" , 𝒙 7 = Ω 𝜀𝑚8 .
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Related work

Bullwhip effect [Lee et al. 1997]

Error propagation in numerical analysis [Gautschi & Klein 1967]

Differences in explanation fidelity can lead to unfairness 
[Balagopalan et al. 2022]
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Experimental setup

10-D features, sampled from multivariate Gaussian

Labels generated using noisy linear model

Linear supply chain (from length 1 to 5)

Each model learns independently 
Depends on the predictions of its parent, creating step-by-step regression 

Each model is MLP with 3 fully connected layers and ReLU activation
Trained using MSE and Adam optimizer, 0.001 LR, 20,000 epochs

Explanations generated using LIME
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Results

Cosine similarity between estimated 
explanation and true explanation 

(true = if 𝑣 could probe all upstream models)
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Results

Cosine similarity between estimated 
explanation and true explanation 

(true = if 𝑣 could probe all upstream models)

Recourse = how far applicant would 
need to move along direction indicated 

by explanation to flip prediction
[Wacther, Mittelstadt, Russell HJLT’17] 
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Evidentiary burdens in legal 
cases against AI decisions

Ongoing work with Ananya Karthik, Daniel E. Ho, and Percy Liang
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Evidentiary burdens

Our legal systems operate under burden of proof

For instance, criminal cases apply the well-known “guilty beyond 
reasonable doubt” standard

In a previous paper on AI Auditing, Rohan Alur and I connected 
this to hypothesis testing [CA EAAMO’24]
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Evidentiary burdens

Our legal systems operate under burden of proof

For instance, criminal cases apply the well-known “guilty beyond 
reasonable doubt” standard

Can we close the gap on evidentiary burdens?

Let’s look at Title VII as a case study…
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Brief intro to Title VII

Title VII of US CRA “prohibits employment discrimination based 
on race, color, religion, sex and national origin” 

There is a complex procedure, but we can simplify as follows:

1. The plaintiff must first establish disparate impact 
This typically involves showing that, e.g., female applicants receive 
worse outcome on average than male applicants despite ______

Quantifying disparate impact is the subject of 10+ years of research
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Brief intro to Title VII

Title VII of US CRA “prohibits employment discrimination based 
on race, color, religion, sex and national origin” 

There is a complex procedure, but we can simplify as follows:

1. The plaintiff must first establish disparate impact
2. The defendant can respond by showing business necessity
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Brief intro to Title VII

Title VII of US CRA “prohibits employment discrimination based 
on race, color, religion, sex and national origin” 

There is a complex procedure, but we can simplify as follows:

1. The plaintiff must first establish disparate impact
2. The defendant can respond by showing business necessity

3. The plaintiff can then prove there is a “less discriminatory 
alternative” the burden of proof is on the plaintiff
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”Less discriminatory alternative”

This is a tall order for AI systems! A straightforward 
interpretation is that the plaintiff produce an algorithm 
that performs just as well but is less discriminatory. 

Two reasons why this burden is typically high:

1. The plaintiff has limited knowledge of the AI system

2. The plaintiff has limited expertise and resources

Why not shift the 
burden of proof? It’s 

unlikely longstanding 
statute on procedure 

will change
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Employer’s argument: 
To reduce disparate 

impact, AI system must 
sacrifice performance 

The claim is that AI 
system is sufficiently 

close to Pareto frontier!
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If the plaintiff argues 
that the AI system is 
pretty “far” from the 
Pareto frontier, then 

they’d be done

But how would the 
plaintiff find the 
Pareto frontier? 
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We can do better!

We can characterize the shape of the Pareto frontier

This is important 
b/c Pareto frontiers 
do not need to be 

convex/concave!
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We can do better!

We show one can extrapolate the true Pareto frontier from easy 
tasks (at least, much easier than training state-of-the-art systems!)
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Main result

𝑋, 𝐴, 𝑌	= covariates, sensitive attribute, outcome RVs

BCE 𝑝, T𝑓  = binary cross entropy of T𝑓 ∈ ℱ on 𝑝
𝐷 = training dataset

Δ = fairness gap (demographic parity gap for our analysis)

Source of unfairness: Assume unfairness is due to selection bias
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Main result

𝑋, 𝐴, 𝑌	= covariates, sensitive attribute, outcome RVs

BCE 𝑝, T𝑓  = binary cross entropy of T𝑓 ∈ ℱ	on 𝑝
𝐷 = training dataset

Δ = fairness gap (demographic parity gap for our analysis)

Theorem (informal):

BCE 𝑝, T𝑓 ≈ 𝐶% 𝑝 + 𝐶& log
𝑐9
Δ

	+	𝐶:(ℱ, 𝐷)(Δ	 +	𝐶;)
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Why is this useful?

There are 5 constants! 4 do not depend on ℱ,𝐷!
That means we can fit 4 constants on small models/datasets

Helps to address the resource & expertise problem plaintiffs face!

For the 𝐶:, use scaling laws!

Theorem (informal):

BCE 𝑝, T𝑓 ≈ 𝐶% 𝑝 + 𝐶& log
𝑐9
Δ

	+	𝐶:(ℱ, 𝐷)(Δ	 +	𝐶;)
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Extensions

This is an ongoing work and this is our first main result, but we 
anticipate extending the Pareto frontier calculation to other 
types of fairness and other sources of unfairness.

Ongoing experiments w/ promising results (coming soon!)

Thoughts & feedback are very welcome
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Wrapping up

Two directions as AI adoption rises:

1. Adjust our understanding of AI to its integration into society
2. Adjust our understanding of society as it integrates AI 

Today: We examined both perspectives 
AI supply chains à how ML targets change in AISCs
Evidentiary burdens à reducing burden of proof in AI cases
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Thank you!
shcen@stanford.edu 
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