
AI Auditing and the Access Question: Exploring Black-box

Auditing and its Connection to Hypothesis Testing

Sarah H. Cen∗ and Rohan Alur

Electrical Engineering and Computer Science, Massachusetts Institute of Technology

1 Introduction

Auditing is the process of evaluating the properties of a system, often to determine whether it
satisfies a predetermined set of criteria. With the proliferation of Artificial Intelligence (AI) tech-
nologies, auditing will serve as a vital tool for AI oversight and accountability. Without the ability
to systematically and consistently test—or audit—for compliance, AI regulations are impossible
to enforce. Beyond compliance testing, auditing also plays several important roles. Perhaps most
fundamentally, it allows for the independent verification of developers’ claims that would otherwise
go untested. It can also be used to certify whether an AI technology meets industry standards
(e.g., privacy standards) that matter to downstream users (e.g., customers) even when they are not
legally required. In this way, auditing not only plays an important role in AI accountability, but
also takes an important step toward developing trustworthy AI.

Consider, by analogy, the U.S. car industry, in which auditing has three important functions.
In the U.S., vehicles must adhere to a variety of federal standards and regulations related to safety
and emissions, which are enforced through audits conducted by the National Highway Traffic Safety
Administration (NHTSA). Beyond compliance testing, car manufacturers are required to disclose
information about their vehicles, such as their fuel economy (i.e., mileage per gallon), which are
both internally verified and subject to external audits by the Environmental Protection Agency
(EPA). To gain an edge over competitors, car manufacturers also make claims about their vehicles;
external and third-party audits validate these claims, legitimizing them and establishing trust
between consumers and manufacturers.

There is a growing consensus that the AI industry would benefit from similar auditing mecha-
nisms (Yeung 2018, Bandy 2021, Raji et al. 2022, Raji 2023). For instance, in the European Union
(EU), the AI Act mandates a mix of internal and third-party audits in the form of “conformity as-
sessments” that are conducted before the release of an AI system or after a substantial modification
(Thelisson and Verma 2024); the General Data Protection Regulation (GDPR) calls for internal
audits in the form of impact assessments conducted before data processing (Bieker et al. 2016); and
the Digital Services Act (DSA) requires annual internal and external audits of the risks associated
with each digital service (Wilman 2022). Moreover, to ensure compliance, regulatory bodies (e.g.,
under GDPR, data protection authorities in each EU member state) are granted broad authority
to conduct investigations that test for compliance. There are even provisions (e.g., in the DSA)
that grant researchers special access to data and systems so that they can audit for considerations
that the regulatory bodies miss (Wilman 2022).

∗Correspondence to Sarah H. Cen at shcen@mit.edu.
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Creating a healthy AI auditing ecosystem includes various considerations, such as who conducts
the audits, who audits the auditors, what standards auditors test for, whether audits are prospective
or retrospective, how often audits are conducted, and more. For many of these considerations, we
may be able to look to other industries for inspiration. However, one question is particularly salient:

What is the minimal access needed to effectively and efficiently audit an AI system?

All auditing procedures require some form of access to the AI system, but unpacking what is
minimally required matters for two reasons: (1) intellectual property protections and (2) resource
constraints. First, the protection of proprietary technologies and data (in particular, of trade
secrets) is a key concern for companies. As a result, the amount of access granted to auditors
is limited and carefully controlled. For example, even regulatory bodies that audit for GDPR
compliance must adhere to strict principles of “necessity” and “proportionality.” Second, auditors
operate with limited resources (e.g., in labor, budget, and technical expertise) and are therefore
interested in the amount of access that allows them to most effectively and efficiently conduct
audits. Answering this question is therefore relevant to both AI developers and auditors.

Driven by this question, we seek to understand what can and cannot be achieved using black-
box access to an AI algorithm f , which is defined as being able to query f on the auditor’s choice
of inputs {xi : i = 1, . . . , N} and observe the outputs {f(xi) : i = 1, . . . , N} but nothing further.
In other words, black-box access allows an auditor to observe an algorithm’s behavior under any
condition (or input) of the auditor’s choice, without knowledge of how that behavior is generated.

Compared to human processes, AI lends itself well to black-box auditing. Consider, for example,
auditing a firm’s (non-AI) hiring practices for discrimination. Here, a black-box audit would require
gathering everyone who plays a role in hiring, handing them a stack of applications, asking them
to evaluate each according to normal procedures, and observing their decisions. This process is not
scalable, as it would require auditors and the firm to invest significant time and resources. Perhaps
more worryingly, people can easily manipulate the outcome of the audit by behaving differently
when audited. On the other hand, it is efficient to repeatedly query AI in a black-box way, and
the results of black-box audits are guaranteed to be faithful to how the AI would behave in practice.

Benefits and limitations of black-box auditing for AI. In this work, we explore the capa-
bilities and limitations of black-box auditing. We begin in Section 2 with a review of auditing in
both non-AI and AI contexts, then discuss related work on AI auditing techniques. In Section 3,
we unpack the merits and drawbacks of black-box auditing. In particular, black-box audits offer
several key benefits: (1) they do not require direct access to proprietary algorithms or data, i.e.,
do not “white box” the AI system; (2) they are agnostic to the underlying AI mechanisms, mean-
ing that the audit does not need to be updated even if the underlying algorithm, training data,
or training pipeline changes; (3) they are less resource-intensive than alternate auditing options,
allowing continual, comprehensive, and scalable auditing; and (4) they can be run prospectively1

and reflect exactly how the algorithm would behave in practice.
At the same time, black-box audits have their blind spots: they cannot speak to the intentions

of AI developers, determine whether the developers adopt best practices, or provide insights
that may be necessary for accountability mechanisms (e.g., legal recourse). To address these
blind spots, it is often necessary to complement black-box access with additional information
from other sources (e.g., access to related open-source models) as well as white- or gray-box
access (e.g., API access). Full access to the entire learning pipeline is often unnecessary, as au-
ditors cannot develop scalable auditing procedures that are individualized to every training pipeline.

1before an AI system is deployed
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Hypothesis testing as a framework for black-box auditing. In this work, we discuss how
black-box auditing can be operationalized using hypothesis testing. That is, we propose that
hypothesis testing can be used to “translate” audit requirements (e.g., AI regulations) into black-
box tests. We introduce the well-studied problem of hypothesis testing in Section 4, drawing
connections between hypothesis testing and legal principles. In particular, we discuss how the null
hypothesis can be viewed as legal presumption, placing the burden of proof on the party that wishes
to prove that the alternate hypothesis is true. We examine the four main components of hypothesis
testing, highlighting parallels between the design criteria of hypothesis testing and of auditors. We
conclude in Section 5 with limitations, challenges, and future work.

Remark. Both authors are, by training, computer scientists. Our hope is to provide a careful
analysis of how auditing could be implemented in practice given the rapid pace of AI development,
with a particular focus on the “access” question. In an effort to provide an interdisciplinary discus-
sion on AI auditing, this piece is an unusual blend of styles. Our primary goal is to connect tools
familiar to technologists with concepts that resonate with regulators; namely, hypothesis testing,
evidence gathering, and legal presumption. This piece is therefore intended for two audiences: (i)
policymakers interested in the implementation of AI audits, and (ii) computer scientists interested
in developing audits.

2 Background

In this section, we briefly review auditing and its relation to AI. Of particular note are Table 1,
which summarizes recent AI auditing efforts, and Section 2.3, which reviews related work.

2.1 Auditing: A brief summary

An audit is an assessment of an organization, entity, or process. Audits are conducted for many
reasons, including (i) testing for compliance with regulations, (ii) determining whether a technology
meets certification standards, (iii) validating claims made by system designers, and (iv) monitoring
an organization’s internal practices. As examples, the 2002 Sarbanes-Oxley Act made financial
auditing commonplace as a tool to detect fraud and confirm the accuracy and completeness of
financial reports; to earn a fair trade certification, vendors regularly undergo audits to ensure they
uphold fair trade practices; and any organizations audit themselves to detect, e.g., financial waste.

Generally, there are three types of auditors: internal, external, and third-party auditors. An
internal auditor is selected from within an organization that seeks to audit itself. An external
auditor is an independent party that is hired by the organization (e.g., its board of directors)
to perform an audit. External auditors typically enter into a contractual agreement with the
organization that outlines, for instance, the scope of the audit and level of engagement. Like
an external auditor, a third-party auditor is not a part of the organization being audited, but
they are additionally not hired by the organization that they are auditing. A third-party auditor
may be employed by another entity, such as a regulatory agency. In order to ensure that auditors
provide objective and high quality reports, auditors are themselves subject to audits. It is customary
for auditors to audit one another and, in certain industries, auditors are overseen by government
agencies, such as the Public Company Accounting Oversight Board (PCAOB) in the US and the
Financial Reporting Council (FRC) in the UK.

Furthermore, audits can also be run retrospectively or prospectively. Retrospective audits
evaluate a system’s past behavior. For example, audits that examine financial records or system per-
formance are retrospective. Prospective audits characterize audits that are either (i) performed
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before deployment or (ii) run on settings that have not yet been encountered. As an example of
(i), prospective audits can be run prior to an AI system’s release or after major modifications. As
an example of (ii), prospective audits can also be performed in an ongoing manner and evaluating
how the system would behave under conditions that have not yet occurred by probing the system.

Although out of the scope of this piece, one final consideration for auditing is set of the prop-
erties or standards one is auditing for, which has become a central focus of the U.S. National
Institute for Standards and Technology (NIST) and European Commission.

2.2 AI auditing

The auditing of artificial intelligence (AI) systems is fairly nascent. In this section, we discuss
legislation that explicitly requires AI audits, legislation that indirectly mandates AI audits, and
other contexts in which AI audits arise.

Legally required AI audits. While some organizations audit themselves and some organizations
are audited by researchers, there have historically been few regulations that legally require auditing.
That is starting to change, and Table 1 in the Appendix provides a (non-exhaustive) list of auditing
requirements for the European Union (EU) Artificial Intelligence (AI) Act, the EU General Data
Protection Regulation (GDPR), the California Consumer Privacy Act (CCPA), the US Algorithmic
Accountability Act (AAA), the New York City (NYC) Local Law 144, Canada’s Directive on
Automated Decision-Making (CDADM), and the EU Digital Services Act (DSA).

Laws that indirectly result in AI audits. In addition to the laws detailed in Table 1, which
explicitly require AI audits, there are several domains in which AI audits are indirectly required. For
example, the Dodd-Frank Wall Street Reform and Consumer Protection Act and Sarbanes-Oxley
Act (SOX) both require audits as a part of the compliance process. Although neither explicitly
mention AI or algorithms, both AI and algorithms have become common tools in the financial
services sector, meaning that both acts indirectly mandate audits of AI systems.

Third-party compliance audits. Lastly, audits are a common tool for ensuring compliance with
the law, even when the audits themselves they are not explicitly mentioned. Regulatory bodies
and third-parties will often audit in order to hold organizations legally or publicly accountable.
For example, the Children’s Online Privacy Protection Act (COPPA) does not explicitly mention
audits, but the Federal Trade Commission (FTC) conducts investigations to check for compliance
with COPPA’s mandates. As a result, many companies also perform internal audits and regularly
monitor their systems to ensure ongoing compliance. Informally, researchers and journalists often
perform audits to hold AI developers and operations publicly accountable by, e.g., uncovering flaws
in security, reporting unexpected behavior in large language models (LLMs) (Nasr et al. 2023), and
surfacing bias or discrimination (Chouldechova 2016).

Remark. As a final note, auditors are typically granted limited access to the systems that they
are auditing. In some cases, this limited access is written in the law, e.g., the CCPA states that
“nothing in this section [on risk assessments] shall require a business to divulge trade secrets” and
GDPR similarly states that “each measure should be appropriate, necessary and proportionate
in view of ensuring compliance with this Regulation.” In other cases, such as third-party audits,
auditors complete their assessments without cooperation from the organization being audited.
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Table 1: Examples of legislation that require audits of data-driven or AI algorithms

Law Enforced by Performed by Audit frequency Audit requirements Penalty

EU
GDPR
(2016)

Data
Protection
Authorities in
each EU
member state

Data controllers (typically
internal)

Before any high-risk
data processing

Data Protection Impact Assessments
(DPIAs): Descriptions of envisioned data
processing operations, purposes, risks to
rights & freedoms of data subjects, measures
to address risks

Up to €20M or 4% of
annual worldwide
turnover, whichever is
higher

EU AI
Act
(2023)

National
authorities in
EU member
states

AI system providers
(internal); must give
national competent
authorities & notified
bodies access (third-party)

Before high-risk
system on market,
ongoing post-market
monitoring, and
whenever system is
substantially modified

High-risk AI systems must undergo
conformity assessments to ensure they meet
requirements for safety, transparency, human
oversight, data, and more (as laid ou in Title
III, Chapter 2)

Determined by
member states; Some
infringements up to
€30M or 6% of annual
worldwide turnover,
whichever is higher

CCPA
(2018)

California
Attorney
General

Businesses whose data
processing presents
significant risks to
consumer privacy or
security

Cybersecurity Audit
must be performed on
annual basis; Risk
Assessment performed
on regular basis
(unspecified)

Cybersecurity Audit must assess effectiveness
of business’ cybersecurity measures in
protecting consumer personal information.
Risk Assessment should evaluate the
processing of personal information and weigh
the benefits of processing against potential
risks to consumer rights

Up to $7.5K per
intentional violation;
additional penalties
given by California
Privacy Protection
Agency

US AAA
(2023†)

Federal Trade
Commission
(FTC)

Covered entities
(businesses using AI
systems)

Ongoing testing and
evaluation with
annual reports

Evaluation of automated decision system’s or
augmented critical decision process’ potential
impacts on consumers, considering privacy,
bias, fairness, transparency, and more

Determined by the
FTC

NYC 144
(2021)

NYC Dept. of
Consumer &
Worker
Protection

Employer/agency using
Automated Employment
Decision Tool (internal);
can use independent
auditor (external)

Prior to first use and
annually

Checks whether automated employment
decision tools have disparate impact on
persons of any “component 1 category”;
summary must be made publicly available

Up to $1.5K per
instance; others
determined by
enforcement body

CDADM
(2019)

Treasury
Board of
Canada
Secretariat

Federal institutions using
automated decision
systems

Early in development,
before production,
and after major
changes to system

Requires assessments and reports on the use
of automated decision-making systemsand
ther effect on individual or community rights,
economic interests, sustaintability, and more.

Unspecified, as
determined by the
Treasury Board

EU DSA
(2022)

Digital Service
Coordinators
in each EU
member state
and the EC

Independent organizations
with restrictions (e.g.,
cannot audit > 10
consecutive years or
provide non-audit services
1 year before/after audit)

Annually Tests compliance with the obligations set out
in Chapter III of the DSA and voluntary
commitments (e.g., in code of conduct or
crisis protocol)

Up to 6% of annual
worldwide turnover;
ongoing penalties until
cease infringement of
up to 5% average daily
turnover

† Proposed but not passed
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2.3 AI auditing techniques

Background: Audit studies. Audit studies have a long history in the social sciences. Bertrand
and Mullainathan (2004) find in a study of labor market discrimination that resumes with White-
sounding names receive 50 percent more callbacks, on average, than identical resumes with African-
American-sounding names. This evidence was gathered by submitting a set of fictitious resumes in
response to real help-wanted ads, allowing researchers to experimentally manipulate the perceived
race of job applicants in a way akin to the black-box audits described in this work.

Taking inspiration from this tradition, there is now a growing body of literature that audits
algorithmic systems for evidence of consumer harm. Investigators have employed audit studies to
examine self-preferencing in search results (Luca et al. 2016, Edelman and Lai 2016, Jeffries and
Yin 2020, Gleason et al. 2023), discrimination in online platforms (Sweeney 2013, Sandvig et al.
2014, Ayres et al. 2015, Datta et al. 2015, Edelman et al. 2015, Kricheli-Katz and Regev 2016,
Wagner et al. 2015, Hannák et al. 2017b, Metaxa et al. 2021a), and the effects of algorithmic
personalization (particularly on political polarization) (Kliman-Silver et al. 2015, Hannák et al.
2017a, Metaxa et al. 2019, Huszár et al. 2022, Nyhan et al. 2023, Hosseinmardi et al. 2023).
A key challenge is that the inputs to these systems are often highly complex, and may not be
directly manipulable by researchers. This motivates other causal identification strategies, e.g., by
identifying natural experiments in observational data (see Yao et al. (2020) for a recent survey or
Angrist and Pischke (2008), Pearl (2009), Imbens and Rubin (2015) for textbook treatments). For
additional background on audit studies, including the legal and ethical questions that arise, as well
as recommendations for best practices, we refer to Metaxa et al. (2021b). For systematic reviews
of the algorithm auditing literature, we refer to Bandy (2021) and Urman et al. (2024).

Frameworks for algorithmic auditing. Perhaps most closely related to this work are general
frameworks for ensuring that algorithms satisfy normative and regulatory constraints. Raji et al.
(2020) propose a framework which guides the development life cycle of an algorithmic decision
pipeline, and Mitchell et al. (2019) propose standardized documentation and benchmarks to im-
prove model transparency. This work is complementary to ours, as the guidelines are targeted at
developers who can access the inner workings of the algorithm. In contrast, we provide an in-depth
discussion of black-box audits, propose a way to translate between the law and audit procedure,
and describe an open problem related to query complexity. Lam et al. (2023) take a different per-
spective, and instead propose the notion of a socio-technical audit to directly study the interplay
between algorithms and their users. In particular, a socio-technical audit involves experimentally
manipulating the outputs of an algorithm—for example, via a browser extension which manipulates
search results or social media feeds—to study human components of a system (e.g., how user react
or modify their behavior) in addition to algorithmic components.

Finally, (Blattner et al. 2021) propose a framework for regulating algorithms based on model
explanations that are tailored to capture specific model characteristics—for example, racial dispar-
ities in the model’s predictions—rather than to best explain the model’s average performance. We
further discuss the relationship of auditing and these interpretability techniques in Appendix A.

Black-box auditing. Our work focuses on black-box auditing, where the auditor may only query
the model, rather than e.g., inspecting source code, model architecture or training procedures.
This approach is intended to enable third party oversight of algorithms (Raji et al. 2022), even in
the face of limited cooperation by algorithm providers (Costanza-Chock et al. 2023). This aligns
with the perspective taken in Cen and Shah (2020), Cen et al. (2023b), which propose auditing
procedures for algorithms which curate content on social media platforms. It is also the approach
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taken in Rastegarpanah et al. (2021), who develop algorithms for testing compliance with the
GDPR’s data minimization principle (that an algorithm uses only “the minimal information that is
necessary for performing the task at hand” (Rastegarpanah et al. 2021)). This is also similar to the
perspective taken in Lee (2022), Akpinar et al. (2022), which propose the use of black-box audits
to assess counterfactuals. For example, such an audit might ask whether, for a given individual,
the algorithmic recommendation changes if the individual’s race were different. As we discuss in
Section 5, these localized audits can be useful for individuals seeking recourse for algorithmic harms.

Finally, contemporaneous work by Casper et al. (2024) argues that a black-box approach is
insufficient for rigorous auditing, and highlight the limitations of black-box queries. These include
(1) the difficulty of developing a global understanding of how a system behaves, (2) the inability to
study system components separately, (3) the possibility that overly simplistic black-box audits can
produce misleading results, (4) the limitations of black-box interpretability methods and (5) the
inability to suggest remedies when models are noncompliant. We share the view that broader access
(e.g., to model weights, gradients or source code) can enable more in depth auditing of algorithmic
systems, and we discuss the benefits and limitations of black-box auditing at length in Section 3.
Given the strictly controlled access provided to auditors (see our remark above) and concerns such
as privacy, our discussion of black-box audits is driven by a desire to explore what can be achieved
with black-box access, which can be supplemented with further access to cover its blind spots.

Nonetheless, we present constructive results indicating that black-box access is sufficient to
audit for many properties of interest. We discuss our focus on black-box auditing at length in
Section 3. We also discuss additional related work in Appendix A.

3 Types of auditing access

Auditing AI systems necessarily requires granting the auditor some form of access to the underlying
model(s). As discussed in the previous section, the appropriate level of access is context-specific and
must balance competing priorities, such as data privacy, intellectual property protections, resource
constraints, necessity, proportionality, and more. In this section we discuss the relative merits of
four kinds of access: access to the training data, the training procedure, the model architecture,
and white- and black-box access to the trained model. Our discussion below hews closely to that
of Cen et al. (2023a).

3.1 Option 1: Access to training data

AI models generate outputs by learning patterns and relationships that are exhibited in their
training data. Because this dataset is so foundational to an AI system, an auditor may wish to
audit the training data. Indeed, the data on which a model is trained can be suggestive of potential
harms and failure modes. For example, over- or under-representation of a population in the training
data can lead to bias (Chouldechova and Roth 2018). Similarly, differences between the test and
training data distributions can lead to generalization failures (Zhou et al. 2021).

Nonetheless, access to the training data alone is typically insufficient for a rigorous audit. The
primary reason is that the same training data can induce many different downstream models, whose
behavior ultimately depends on the entire training pipeline (e.g., the choice of hyperparameters,
model architecture, and learning algorithm). Although they arise from the same training data,
these models may differ substantially along nearly any dimension of interest, including accuracy,
fairness, and robustness. This “model multiplicity” (Black et al. 2022) or “underspecification”
(D’Amour et al. 2022) is an unavoidable feature of most modern machine learning pipelines. As
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such, it is not only difficult, but often impossible for an auditor to conclusively characterize an AI
system’s behavior from its training data alone.

There are, still, many reasons why an auditor may wish to examine an AI system’s training data.
For instance, auditing a company’s data acquisition, cleaning, balancing, privacy, and provenance
practices can encourage good data hygiene. Although requiring that the training data meet a strict
set of property requirements does not generally have the intended effect (most bright-line rules are
easily circumvented due to the underspecification phenomenon identified above), data disclosure
audits can encourage good company practices and prevent downstream harms. That is, auditors
could assess the comprehensiveness and accuracy of information that companies disclose about their
training data and practices. Consider, for example, a company wishing to use GPT. It is useful for
this company to know the time frame across which GPT’s training data is collected; data disclosure
audits would check that critical information or appropriate warnings are given by AI providers.

3.2 Option 2: Access to training procedures

One can alternatively request access to an AI system’s training procedure. By “training procedure,”
we mean the high-level steps that the AI developer took in order to produce the final, trained model.
As simple examples, auditors could require that AI developers describe the broad class of models
that they chose (e.g., transformers or decision trees), the objective functions that they optimize
(e.g., the factors that a social media algorithm optimizes in its pipeline), and the algorithm that
they applied on the chosen model in order to achieve the desired objective (e.g., stochastic gradient
descent or CART), and other training information (e.g., the amount of training resources). One
can think of the training procedure as a roadmap for how the AI system is trained and produced.

For example, it was found that Facebook’s objective function weighted “reacts” five times higher
than “likes” when inferring user preferences Lonas (2021), which resulted in the unintentional ampli-
fication of emotional content. An audit of Facebook’s training procedure, including their objective
functions, may have encouraged the company to scrutinize and justify (or, if appropriate, abandon)
such design choices. In this way, auditing training procedures can serve as simple sanity checks
that alert model developers to potential non-compliance and even proactively identify avenues for
model improvement.

However, as we saw with training data access, the same training procedure can yield many
downstream models, and there is no guarantee that they behave similarly. The resulting model
depends on various other factors, including the training data, model weights at initialization, and
more. Therefore, while an auditor who is given access to a system’s training procedure can perform
sanity checks, they cannot infer much more about the system’s behavior. Furthermore, since the
training procedure lays out the steps taken to produce the AI system, access to training proce-
dures should be carefully controlled. Of the forms of access discussed in this section, the training
procedure is arguably the most valuable information associated with a commercial product.

3.3 Option 3: Access to the model skeleton

The next form of access we consider is access to the model “skeleton” (or untrained model). By
“skeleton,” we mean the specific model (e.g., neural network architecture) that is used, without the
parameters, training data, or training procedure.

The defining feature of this form of access is that it reveals the key interfaces within the machine
learning pipeline. From the model skeleton, an auditor can determine the expected inputs (e.g.,
types of features) and outputs (e.g., a number between 0 and 1) of the model. The auditor can
also ascertain how many components make up the AI system and the relationship between different
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components of the AI system. For example, suppose that a job applicant’s information and resume
are first sorted into one of several job categories, processed by appropriate algorithms, before being
assigned a score between 0 and 1, which is finally thresholded to produce a hiring recommendation.
Then, this entire “flow” would be captured by the model skeleton.

Access to the model skeleton provides perhaps the most interpretable view of an AI system.
Indeed, when the social media platform X (formerly known as Twitter) voluntarily released their
recommendation model skeleton, (twi), it revealed qualitative insights into X’s content curation
algorithm. For example, the public could glean that X “sources half of a user’s content from in-
network Tweets (i.e., from accounts that the user follows) and the other half from out-of-network
Tweets” (Cen et al. 2023a). As with the training procedure, a model skeleton allows the auditor
to perform sanity checks to ensure that an AI system does not have obvious flaws. It can even be
used to identify discrepancies between an AI company’s claims and the deployed system.

The model skeleton alone, however, is not enough to characterize the precise behavior of an AI
system. Indeed, as mentioned in Section 3.1, even models with the exact same skeleton can behave
very differently from one another. In this way, it is difficult to verify whether an AI system complies
with a specific rule or meets a given standard from access to the model skeleton alone. Moreover,
depending on the technical fluency of an auditor, the skeleton may be too opaque to determine the
implications of choosing one model skeleton over another.

3.4 Option 4: White-box and black-box access to the trained model

The final option is to provide access to the final, trained model. This option is particularly appealing
because an auditor can directly test and probe the end product. That is, they can interface with
the same system that is ultimately deployed. Unlike the previous options, access to a trained model
allows an auditor to unambiguously determine how the model would behave.

There are two versions of providing access to the final model: white-box access (access to the
entire trained model including the weights) and black-box access (the ability to probe the model
on inputs and observations of the outputs, as defined in Section 1).2

An auditor can, from black-box access alone, test whether an AI system satisfies certain criteria
of interest, from how well it performs on an outlier population to whether it has disparate impact on
different races. White-box access to the trained model, which strictly subsumes black-box access,
provides the auditor with significantly more information. An auditor could, for example, take
gradients with respect to various inputs of interest (a technique that has been used to gain insight
into the “logic” behind an AI model). There is precedent for white-box access in other domains,
such as the automotive industry, where an inspector can examine the vehicle in its entirety.

Although white-box access is appealing, black-box access is often sufficient. By analogy, an
auditor with black-box access can crash test a car whereas an auditor with white-box access would
also be able to inspect every component of the car. Black-box access would allow an auditor to test
how the model behaves end-to-end without necessarily requiring that the auditor be technically
proficient (which is often needed if an auditor wishes to leverage the white-box access option).3

Because black-box access can reduce the risk of leaking proprietary information, it might all that
is “necessary” or “proportionate” depending on the context of interest.

2Note that white-box access to the training pipeline and white-box access to the trained model are distinct.
“White-box” generally refers to unhindered access, which can be applied to different parts of the AI pipeline. By
contrast, “black-box access” is distinct and generally only corresponds to the definition given in Section 1.

3Note, however, that if auditors opt for black-box access, it might be appropriate to cap the number of queries
since any trained model can, in theory, be fully reconstructed from infinite black-box queries.
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Compared to the other three options discussed in this post, both white- and black-box access to
the trained model are outcome-focused. They do not heed an AI developer’s intention, philosophy,
or technique. They ignore the means used to obtain an AI system, concentrating solely on the
ends. They assess an AI model based on its end-to-end behavior. In a way, this approach is
desirable. Indeed, even if AI developers curate a pristine training dataset, their AI model can
still produce poor results, which only becomes apparent with access to the trained model. On the
flip side, access to the trained model but nothing else is not always satisfactory from a broader
accountability perspective. An individual contesting an AI-driven decision may, for instance, wish
to understand how that decision came about—to trace the choices an AI developer made that led
to the decision.

3.5 Considering all the options

Of the options described above, the fourth—access to the trained model—provides an auditor with
the greatest flexibility with the least amount of ambiguity. That is, an auditor can test a model
based on various criteria (e.g., to determine whether it satisfies a property known as calibration)
and remain confident that their findings pertain to the specific AI system of interest. In contrast,
an auditor cannot definitively say whether an AI system satisfies, for example, calibration from the
training data, training procedure, or untrained model alone.

Still, none of the four options stands above the rest in every way. The first three options serve
as useful sanity checks, speak to the intentions of an AI developer, and encourage AI developers
to adopt good practices. Moreover, they can ensure that other accountability mechanisms are
achievable—for example, an individual contesting an AI-driven decision can cite poorly cleaned
data (as provided by Option 1) or an overly simplistic objective function (as provided by Option
2) to argue that the AI-driven decision is inappropriate for them.

Auditors can therefore complement access to trained models with limited and carefully chosen
access to the training data, training procedure, and untrained model. Auditors can even adopt a
tiered system, where companies of different magnitudes face different access requirements. There
are, additionally, other forms of access that we omit in our discussion, such as API access and
access to a model’s training checkpoints.

4 Black-box auditing as hypothesis testing

Thus far, we have discussed the benefits and challenges facing AI auditing, focusing in particular
on what information an auditor can glean from different forms of access to an AI system. Our
discussion led us to black-box auditing, which is compelling in its ability to directly probe an AI
system. In this section, we discuss how black-box auditing can be formalized as hypothesis testing.

Although hypothesis testing as a tool for auditing is not new, our main contribution is to
identify precisely how hypothesis testing using black-box access parallels legal procedure. In other
words, we propose that hypothesis testing can serve as a “translation” between the law and the
implementation of audits. Given this translation, policymakers would not need to design audits
from scratch each time, nor would they need to fully understand every AI system that is being
audited. Rather, policymakers would simply need to specify the parameters of the hypothesis test.

In particular, we discuss how the choice of null hypothesis in a hypothesis test can be viewed
as a legal presumption, placing the burden of proof on the party that wishes to either certify
compliance or demonstrate the noncompliance of a particular algorithm. We further touch on how
hypothesis testing maps to other components of the auditing process, including the balance between
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gathering sufficient evidence and protecting trade secrets, and the way in which the error tolerance
of a hypothesis test can model auditor leniency.

4.1 Setup

Consider a model developer or operator, who we refer to as the AI provider for the remainder of
this work. The provider employs an algorithm f ∈ F , where F is a class of mappings from values
in X to distributions over Y as denoted by ∆(Y) (we assume throughout that Y is countable). For
example, in the context of lending decisions, f could map an applicant’s characteristics x ∈ X to
a measure f(x) ∈ Y ⊂ [0, 1] of the applicant’s creditworthiness. Let px denote the true (possibly
unknown) marginal distribution of x.

The auditor is interested in determining whether the provider’s algorithm f complies with a
requirement of interest. We denote this requirement by g : F → R.

Definition 1. We say that an algorithm f ∈ F is g-compliant if and only if g(f) ≤ 0.

When the property g is clear from context, we simply say an algorithm is compliant. In a
black-box audit, the auditor has access to N input-output pairs (xi, f(xi)). We refer to the pairs as
the auditor’s evidence and denote it by E = {(xi, f(xi)) : i = 1, . . . , N}.

In practice, the auditor has a limited amount of evidence due to practical considerations (gath-
ering evidence E can be costly) as well as concerns that if m is too large relative to the complexity
of F or X , the auditor can reverse engineer the algorithm f , which may be an intellectual property
concern.4 The auditor’s task is then as follows:

Determine whether f is g-compliant given a limited set of evidence E.

We will make the notion of “limited” precise in the following sections. First, we provide several
examples illustrating the scope of Definition 1.

Example 1 (Maximum loss). Requiring that f ’s maximum loss ℓ over some S ⊆ X is at most
η is equivalent to requiring that g(f) ≤ 0, where g(f) = maxx∈S ℓ(f(x), x) − η. Depending on
the definition of loss, one can audit for minimax fairness (by defining loss as negative perfor-
mance), worst-case harm (by defining loss as the output’s harm, e.g., toxicity level), and even
copyright infringement (by defining loss as the dissimilarity between x and the copyrighted work).

Example 2 (Group fairness). In the area of algorithmic fairness, group fairness generally reflects
a notion of parity across groups. For example, one notion of group fairness known as “statistical
parity” requires that the rate at which a binary classifier f : X → {0, 1} selects members of group G1

is at most η > 0 far from the rate at which f selects members of group G2 under some distribution
px over X . This is equivalent to requiring that g(f) ≤ 0, where

g(f) = |Epx [f(x) |xG = G1]− Epx [f(x) |xG = G2]| − η.

The expectation above is taken over x ∼ px, and xG ∈ {G1, G2} is the feature in x denoting group
membership.

Example 3 (Individual fairness). Another notion of algorithmic fairness requires that “similar
individuals be treated similarly,” as captured by the criterion: D(f(x), f(x′)) ≤ Ld(x, x′) for all
x, x′ ∈ X ; distance metrics D and d on Y and X , respectively; and Lipschitz constant L > 0 (Dwork

et al. 2011). This is equivalent to requiring that g(f) ≤ 0, where g(f) = maxx,x′∈X
D(f(x),f(x′))

d(x,x′) −L.

Other properties, including calibration and differential privacy, can also be cast under Definition 1.

4For example, if f is deterministic and N ≥ |X |, then the auditor can recover f ’s exact behavior.
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4.2 Black-box auditing as hypothesis testing

Given an algorithm f and auditing criterion g, the auditor’s goal is to determine whether f is
g-compliant using E . Below, we discuss two possible hypothesis tests and their implications before
describing the general hypothesis testing procedure in Section 4.3.

Presumption of compliance. Consider an auditor who seeks to discern which of the following
hypotheses holds:

H0 : g(f) ≤ 0, H1 : g(f) > 0. (1)

Let H ∈ {H0, H1} denote the ground-truth state. For example, if f is compliant, then H = H0; if
f is not, then H = H1. The auditor does not know H a priori (otherwise, the auditor would know
whether f is or is not compliant before the audit). Therefore, the auditor’s goal is to develop a
decision test or rule Ĥ such that Ĥ(E) = H0 if the auditor believes f is compliant and Ĥ(E) = H1,
otherwise. The auditor would like Ĥ to match H for all f ∈ F , as we formalize in Section 4.3.

In statistical inference, H0 is known as the null hypothesis. In practice, the implication is that
the auditor’s presumption under (1) is that f is compliant. The auditor therefore assumes (and
reports) that f is compliant unless the evidence allows them to confidently reject this presumption.

The following question arises: Should the auditor always presume compliance? As shown next,
the hypothesis test can be reversed.

Presumption of non-compliance. Consider a different set of hypotheses:

J0 : g(f) > 0, J1 : g(f) ≤ 0 (2)

Relative to (1), the null and alternate hypotheses have been swapped. As before, there is a ground-
truth state J ∈ {J0, J1}, and the auditor’s goal is to develop a decision rule Ĵ such that, given
evidence E , the decision Ĵ approximates J well across all f ∈ F . In this case, the null hypothesis
J0 (i.e., the legal presumption) is that the algorithm if not compliant.

Burden of proof: Which test should the auditor use? The null hypothesis reflects the
auditor’s presumption and, accordingly, who bears the burden of proof in the auditing process.
Suppose, for example, there is a law requiring that AI providers are non-discriminatory, but the
law does not require the AI provider to disclose any information to auditors. Then, under (1), the
AI provider is not incentivized to disclose any information (i.e., to contribute any evidence E to the
auditing process): since the auditor can only reject the null hypothesis H0 : g(f) ≤ 0 if they have
enough evidence to do so, the burden of proof is on the auditor (or corresponding plaintiff).

On the other hand, under (2), the burden of proof is on the AI provider. That is, the AI
provider is incentivized to give the auditor enough evidence to convince the auditor to reject
the null hypothesis J0. In this way, the choice of hypothesis test should reflect the desired legal
presumption and corresponding placement of burden of proof. This choice may vary across contexts.
For example, if the auditor’s evidentiary burden is too great under (1), and the law may wish to
shift the evidentiary burden by adopting (2).

4.3 Hypothesis testing procedure

Our primary goal is to examine the suitability of hypothesis testing as a framework for black-box
auditing. As such, we describe the general procedure and considerations for hypothesis testing
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below. We refer readers interested in additional background on hypothesis testing to Casella and
Berger (2008) for a textbook treatment.

For the remainder of this work, we adopt a presumption of compliance as given in (1), though
our results can be equivalently applied to (2). We discuss four main components of hypothesis
testing next: the evidence, decision rule, model, and tolerance.

1. Evidence. The auditor has access to evidence E , as defined in Section 4.2. Note that this
evidence may be supplemented with other information (e.g., from API access or access to an
open-source model related to f). The auditor is generally limited in the amount of evidence
they can gather, for example, due to strictly controlled access to algorithm f or its training
data or due to limited resources.

2. Decision rule. Given evidence E , the auditor’s goal is to develop an audit—in other words, a
decision rule Ĥ—that maps evidence E to a decision H0 or H1, which correspond to deciding
whether to report that f is compliant or non-compliant, respectively. As discussed in Section
4.2, the auditor adopts the default decision H0 unless the evidence is convincing enough for
the auditor to reject H0, as we review next.

3. Design criteria & tolerance. A decision rule Ĥ is evaluated based on two quantities: the
false positive rate (FPR) and true positive rate (TPR):

FPR = P
(
Ĥ = H1|H = H0

)
,

TPR = P
(
Ĥ = H1|H = H1

)
,

where P is taken with respect to randomness in the evidence E and decision rule Ĥ. (Observe
that the true negative rate and false negative rate can be computed directly from the FPR and
TPR.) The field of hypothesis testing is largely concerned with finding rules that maximize
the TPR while minimizing the FPR. Although we do not review them here, one approach is
to restrict the maximum allowable FPR (known as the significance level) to ζ and find the
decision rule that achieves the maximum TPR among all rules that have an FPR no more
than ζ and for all possible algorithms in F . This rule is known as the uniformly most powerful
(UMP) test and can be viewed as an ideal benchmark (though it does not always exist). The
maximum allowable FPR can be viewed as the tolerance of an audit.

4. Model. The final ingredient of any hypothesis test is the model. To explain the model,
consider the following intuition. Given some evidence E , the auditor’s job is determine whether
g(f) ≤ 0. In other words, the auditor would like to use E to infer something about f . In
order to do so, the auditor must make some assumption about how f generates E ; that is, to
map from E back to f , the auditor needs a model of how f maps to E .
The model is ultimately what allows the auditor to develop an appropriate decision rule Ĥ
and underlies both the FPR and TPR. Without a model, the auditor lacks any assumptions
on which to build a decision rule; moreover, both FPR and TPR are implicitly defined with
respect to a model (i.e., data generating process).

The model maps the possible true states H0 and H1 to evidence E = {(x, f(x)) : x ∈ X̄}.
Thus, given a model, the auditor seeks to estimate the true state from evidence. For example,
the auditor may assume that x are drawn from some distribution D. The auditor knows that
the outputs f(x) are determined by f . By definition, the auditor does not know the very
algorithm f that they wish to audit, but the auditor may assume that f belongs to some
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model family F̄ ⊂ F . In this case, the model is determined by (D, F̄).

To construct a decision rule satisfying the design criteria above, the auditor must necessarily
make assumptions that, together, form a model. The model should describe the data gener-
ating process mapping true states H0 and H1 to evidence E . For example, the auditor may
assume that the input-output pairs (xi, f(xi)) are drawn i.i.d. from some known distribution
px and that the unknown model f lies in some known class FA (e.g., the set of all linear
classifiers). Given a model mapping the true state H to the evidence E , the auditor seeks
to estimate H from E . The choice of model is ultimately up the auditor, who faces a key
trade-off: a model should be general enough to capture the true data generating process while
also being narrow enough for the auditor to formulate Ĥ.

Summary. Putting these four components together, the auditor takes the following steps: decide
on an appropriate model and tolerance, develop a decision rule, gather evidence, and apply the
decision rule. As mentioned previously, the auditor faces several constraints, foremost of which is
limited evidence E with which to conduct the audit. The auditor may also have other concerns,
such as ensuring that the audit is manipulation-proof (Yan and Zhang 2022).

5 Limitations, challenges and future work

While black-box auditing is a powerful tool for detecting algorithmic harms, we view our approach
as merely one component of a holistic approach to ensure responsible oversight of algorithms.
Furthermore, while the framework we propose is quite general, it is subject to a number of technical
limitations which limit its practical scope. In this section we provide an overview of these limitations
and suggest promising directions for future work.

Multiple hypothesis testing. While our work considers testing a single property of a model,
auditors are typically interested in auditing for multiple criteria or running repeated audits over
time. This can present additional challenges, as (1) the reuse of data across audits will invalidate
basic statistical guarantees and (2) even audits run on independent samples will not (on their own)
control the family-wise error rate or false discovery rate (Benjamini and Hochberg 1995). These
issues are exacerbated when the number of audits is not known ex-ante, and may depend on the
results of prior audits. While this is a well-studied problem in the statistics literature (Benjamini
and Hochberg 1995, Tian and Ramdas 2019), approaches which are tailored to a specific auditing
context may yield additional performance improvements. For example, the auditor may believe that
the results of certain audits are independent from one another, or may use the kind of statistical
audits we propose here to surface issues which can then be investigated more thoroughly (e.g., by
requiring additional disclosure from the AI provider).

Choosing queries S. A key challenge in black-box auditing is choosing the set of inputs S ⊆ X
on which to query f . The simplest methods sample i.i.d. from some population of interest, or
otherwise specify S a priori. This can be a challenging task, particularly when the reference
population is hard to define. Furthermore, it is sometimes more natural to construct queries in
an online fashion (e.g., Yan and Zhang (2022)), where successive queries are chosen conditional on
the output of prior queries. We leave a more detailed exploration of adaptive black-box auditing
to future work.
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Explanations, recourse and the limits of auditing. While auditing can be a powerful tool
for revealing unwanted behavior, it does not necessarily indicate what the provider should do to
correct or mitigate these issues. Indeed, as argued in Casper et al. (2024) and discussed in Section 3,
is it possible that ‘white-box’ approaches can be more informative in this regard. Furthermore,
black-box auditing does not necessarily enable appropriate recourse when an individual is harmed
by an algorithm. In particular, the result of a black-box audit do not always reveal whether the
model make a mistake or otherwise behaved unreasonably on a specific instance. In such cases,
a more localized (or ‘counterfactual-based’) approach to auditing might be appropriate (Cen and
Raghavan 2022, Lee 2022, Akpinar et al. 2022).
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Sociotechnical audits: Broadening the algorithm auditing lens to investigate targeted advertising.
Proc. ACM Hum.-Comput. Interact., 7(CSCW2), oct 2023. doi: 10.1145/3610209. URL https:

//doi.org/10.1145/3610209.

Seung C. Lee. A black box approach to auditing algorithms. Issues In Information Systems, 2022.

Zachary C. Lipton. The mythos of model interpretability, 2016.

Lexi Lonas. Facebook formula gave anger five times weight of likes, doc-
uments show — thehill.com. https://thehill.com/policy/technology/

578548-facebook-formula-gave-anger-five-times-weight-of-likes-documents-show/, Oct
2021. [Accessed 26-03-2024].

Daniel Lowd and Christopher Meek. Adversarial learning. In Proceedings of the Eleventh ACM SIGKDD
International Conference on Knowledge Discovery in Data Mining, KDD ’05, page 641–647, New York,
NY, USA, 2005a. Association for Computing Machinery. ISBN 159593135X. doi: 10.1145/1081870.
1081950. URL https://doi.org/10.1145/1081870.1081950.

Daniel Lowd and Christopher Meek. Good word attacks on statistical spam filters. In International Confer-
ence on Email and Anti-Spam, 2005b. URL https://api.semanticscholar.org/CorpusID:1933015.

Michael Luca, Tim Wu, Sebastian Couvidat, Daniel Frank, and William Seltzer. Does google content degrade
google search? experimental evidence. 2016. URL https://api.semanticscholar.org/CorpusID:

53570166.

18

https://api.semanticscholar.org/CorpusID:5046541
https://api.semanticscholar.org/CorpusID:5046541
https://themarkup.org/google-thegiant/2020/07/28/google-search-results-prioritize-googleproducts-over-competitors
https://themarkup.org/google-thegiant/2020/07/28/google-search-results-prioritize-googleproducts-over-competitors
https://api.semanticscholar.org/CorpusID:51782788
https://api.semanticscholar.org/CorpusID:51782788
https://api.semanticscholar.org/CorpusID:1102398
https://api.semanticscholar.org/CorpusID:1102398
https://api.semanticscholar.org/CorpusID:9059612
https://doi.org/10.1145/3610209
https://doi.org/10.1145/3610209
https://thehill.com/policy/technology/578548-facebook-formula-gave-anger-five-times-weight-of-likes-documents-show/
https://thehill.com/policy/technology/578548-facebook-formula-gave-anger-five-times-weight-of-likes-documents-show/
https://doi.org/10.1145/1081870.1081950
https://api.semanticscholar.org/CorpusID:1933015
https://api.semanticscholar.org/CorpusID:53570166
https://api.semanticscholar.org/CorpusID:53570166


Scott Lundberg and Su-In Lee. A unified approach to interpreting model predictions, 2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks, 2017.

Subha Maity, Songkai Xue, Mikhail Yurochkin, and Yuekai Sun. Statistical inference for individual fairness,
2021.

Natalie Maus, Patrick Chao, Eric Wong, and Jacob Gardner. Black box adversarial prompting for foundation
models, 2023.

Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A survey on
bias and fairness in machine learning, 2019.
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Fábio Perez and Ian Ribeiro. Ignore previous prompt: Attack techniques for language models, 2022.

Geoff Pleiss, Manish Raghavan, Felix Wu, Jon M. Kleinberg, and Kilian Q. Weinberger. On fairness and
calibration. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus,
S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pages 5680–5689, 2017. URL https://proceedings.neurips.cc/paper/

2017/hash/b8b9c74ac526fffbeb2d39ab038d1cd7-Abstract.html.

Inioluwa Deborah Raji. The Anatomy of AI Audits: Form, Process, and Consequences. In The Oxford Hand-
book of AI Governance. Oxford University Press, 2023. ISBN 9780197579329. doi: 10.1093/oxfordhb/
9780197579329.013.28. URL https://doi.org/10.1093/oxfordhb/9780197579329.013.28.

Inioluwa Deborah Raji, Andrew Smart, Rebecca N. White, Margaret Mitchell, Timnit Gebru, Ben Hutchin-
son, Jamila Smith-Loud, Daniel Theron, and Parker Barnes. Closing the ai accountability gap: defining
an end-to-end framework for internal algorithmic auditing. Proceedings of the 2020 Conference on Fair-
ness, Accountability, and Transparency, 2020. URL https://api.semanticscholar.org/CorpusID:

209862020.

19

https://api.semanticscholar.org/CorpusID:233322946
https://api.semanticscholar.org/CorpusID:233322946
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://proceedings.neurips.cc/paper/2017/hash/b8b9c74ac526fffbeb2d39ab038d1cd7-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/b8b9c74ac526fffbeb2d39ab038d1cd7-Abstract.html
https://doi.org/10.1093/oxfordhb/9780197579329.013.28
https://api.semanticscholar.org/CorpusID:209862020
https://api.semanticscholar.org/CorpusID:209862020


Inioluwa Deborah Raji, Peggy Xu, Colleen Honigsberg, and Daniel E. Ho. Outsider oversight: Designing a
third party audit ecosystem for ai governance, 2022.

Ashesh Rambachan, Jon M. Kleinberg, Sendhil Mullainathan, and Jens Ludwig. An economic approach
to regulating algorithms. NBER Working Paper Series, 2020. URL https://api.semanticscholar.

org/CorpusID:214775707.

Bashir Rastegarpanah, Krishna P. Gummadi, and Mark Crovella. Auditing black-box prediction models
for data minimization compliance. In Advances in Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Systems 2021, 2021.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should i trust you?”: Explaining the
predictions of any classifier, 2016.

Joseph P. Romano. On non-parametric testing, the uniform behaviour of the t-test, and related problems,
2004. URL https://www.jstor.org/stable/4616851.

Christian Sandvig, Kevin Hamilton, Karrie Karahalios, and Cédric Langbort. Auditing algorithms :
Research methods for detecting discrimination on internet platforms. 2014. URL https://api.

semanticscholar.org/CorpusID:15686114.

Latanya Sweeney. Discrimination in online ad delivery. http://ssrn.com/abstract=2208240, 2013.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. Intriguing properties of neural networks, 2013.

Eva Thelisson and Himanshu Verma. Conformity assessment under the EU AI act general approach. AI
Ethics, January 2024.

Jinjin Tian and Aaditya Ramdas. Online control of the familywise error rate, 2019.
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Appendix

A Additional related work

Algorithmic fairness. Our work is inspired by a large literature on algorithmic fairness. This
methodological work is itself inspired by well-publicized instances of real-world algorithmic discrim-
ination (e.g, Chouldechova (2016)). Of particular relevance to our work are the many definitions
of fairness which have been proposed, including the notion of individual fairness (Dwork et al.
2011), equalized odds (Hardt et al. 2016), statistical parity or disparate impact (Calders et al.
2009, Kamiran and Calders 2009, Calders and Verwer 2010, Feldman et al. 2014, Edwards and
Storkey 2015, Zafar et al. 2016, Johndrow and Lum 2017, Woodworth et al. 2017) and calibration
(Crowson et al. 2016, com 2016), (Flores et al. 2016, Pleiss et al. 2017, Berk et al. 2017). Choosing a
particular fairness measure is highly nontrivial, as imposing fairness constraints generally comes at
some cost to model accuracy ((Corbett-Davies et al. 2017)). Furthermore, many seemingly natural
definitions of fairness turn out to be incompatible with each other ((Kleinberg et al. 2016, Pleiss
et al. 2017)). This motivates alternative approaches to fairness which do not directly alter model
training procedures (Rambachan et al. 2020).

Our work is most closely related to a smaller but growing literature which develops tests for
specific kinds of algorithmic harms or failures. For example, Black et al. (2019), Yan and Zhang
(2022), Cherian and Candès (2023) develop tests for disparities in performance on important (and
perhaps legally protected) subgroups, Xue et al. (2020) and Maity et al. (2021) propose algorithms
to detect violations of individual fairness, Tramèr et al. (2015) and Adler et al. (2016) develop
methods to understand how protected attributes influence model behavior (including indirectly).
Alur et al. (2023, 2024) propose tests to detect whether algorithms fail to incorporate contextual
information which may be available to a human decision maker, and Bartlett et al. (2019) propose
a framework for detecting ‘input’ or proxy discrimination. For additional background we refer to
Chouldechova and Roth (2018) and Mehrabi et al. (2019) for surveys of the literature.

Explainable machine learning. Our work is also related to a large and growing literature on
explainable (or interpretable) machine learning. Although we cannot provide a complete overview
here, notable works include LIME (Ribeiro et al. 2016), a technique for providing explanations for
individual model predictions via black-box access, and SHAP (Lundberg and Lee 2017), a technique
for attributing individual model predictions to specific inputs (‘features’). Zeiler and Fergus (2013)
propose a method for visualizing intermediate layers of a convolutional neural network. These works
are broadly motivated by a desire to understand why and how machine learning models (particularly
nonlinear models) make predictions. For additional background, including the challenges of defining
model interpretability, we refer to Lipton (2016). For a survey and book-length treatment of
specific techniques for model interpretability, we refer to Burkart and Huber (2020), Molnar (2022),
respectively.

Adversarial attacks. Finally, our work on black-box auditing is complementary to a rich lit-
erature on adversarial machine learning, which seeks to discover (or mitigate against) adversarial
inputs—often small perturbations of non-adversarial inputs—which ‘fool’ an algorithm into produc-
ing incorrect or incoherent outputs. Indeed, the robustness of algorithmic predictors to adversarial
attacks is itself a natural property of interest for both internal and external auditors. Furthermore,
the task of generating adversarial inputs using a sequence of black-box queries is very similar to
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the problem of auditing for extreme values, and both are naturally addressed via the machinery of
online convex optimization.

Work on adversarial attacks against machine learning models dates to early email spam filters
(Dalvi et al. 2004, Lowd and Meek 2005a,b). Much of the more recent literature on the vulnerability
of deep neural networks to adversarial attacks can be traced to Szegedy et al. (2013), who document
the sensitivity of neural networks to imperceptible perturbations of their inputs. Notable work
on adversarial attacks of deep neural networks includes Nguyen et al. (2014), Goodfellow et al.
(2014), Kurakin et al. (2016), Biggio et al. (2017), Brendel et al. (2017), Ilyas et al. (2018). To
address these vulnerabilities, Madry et al. (2017) propose an approach for training adversarially
robust neural networks. More recently, Perez and Ribeiro (2022), Xu et al. (2022), Maus et al.
(2023) propose techniques for generating adversarial prompts for modern foundation models. For
additional background on adversarial machine learning, we refer to Biggio and Roli (2017).
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