Regulating algorithmic filtering on social media

Sarah H. Cen and Devavrat Shah | MIT EECS

Spotlight at NeurIPS 2021

What is this talk about?

How to audit?

How should one translate a regulation \rightarrow auditing procedure?

Provide an **auditing procedure** to check platform's compliance. Strong statistical **guarantees** how well it enforces the regulation.

How does the audit affect the platform & its users?

Not necessarily a performance-regulation **trade-off**. **Content diversity** aligns interests of the regulator & platform.

Social media platforms influence through information

Social media platforms provide information ...

source: iphonelife.com

source: gizbot.com

Calls to regulate

Increasing calls to regulate

Ex 1: Ads not be based on user's sexual orientation. Ex 2: Info on public health (e.g., COVID-19) not reflect political affiliation. Ex 3: Not sway voting preferences beyond serving as a social network.

Translating from **regulation** \rightarrow **auditing procedure** is difficult.

- Reactive: narrow & delayed.
- Performance cost: hurts users & platform.
- Censorship: removal of content.
- **Privacy**: of user's personal data.

•

• Trade secrets: access to algorithms is limited.

Main takeaways

Can we translate a regulatory guideline \rightarrow auditing procedure?

Main contribution: Auditing procedure

Given a regulation in CF form, an auditor can test whether the platform is in compliance.

Setup

Problem setup

The platform selects the content shown to its users by ...

 $\mathbf{z}_i \sim p_z(\,\cdot\,;\theta)$, $\theta \in \Theta$

Form of regulation

Counterfactual regulation

"Algorithm \mathcal{F} must behave similarly under x and x' for all $(x, x') \in S$."

Articles containing medical advice on COVID-19 must be robust to user's political affiliation. It is not the platform's job to sway voting preferences beyond serving as a social network.

=

hypothetical!

"The articles shown by \mathcal{F} that contain medical advice on COVID-19 should be **similar** whether a user is left-leaning or right-leaning. "Posts about political candidates that are injected by \mathcal{F} should be **similar** to the content a user would see from its social network without any algorithmic filtering."

What is an appropriate notion of "similarity"?

Algorithmic filtering affects how users make decisions

Observation

Algorithmic filtering is powerful and sometimes harmful because information influences decisions.

Examples. The content that \mathcal{F} filters affects ...

- How the user votes
- Whether they get vaccinated
- Where they eat
- What items they purchase

Implication on "similarity".

When we enforce similarity between $\mathcal{F}(\mathbf{x})$ and $\mathcal{F}(\mathbf{x}')$, it should be w.r.t. the outcome of interest: the users' decisions.

Decision robustness

Counterfactual regulation

"Algorithm \mathcal{F} must behave similarly under x and x' for all $(x, x') \in S$."

 \mathcal{F} is *decision-robust* to (x, x') if and only if, for any Q, one cannot confidently determine that $x \neq x'$ from D and D'.

└─→ can formalize as hypothesis test

Auditing procedure

Auditing procedure

Counterfactual regulation

"Algorithm \mathcal{F} must behave similarly under x and x' for all $(x, x') \in S$."

Auditing procedure

Inputs:	${\cal F}$		x		x'		Θ		e
---------	------------	--	---	--	----	--	---	--	---

1 $\tilde{\theta} \leftarrow \mathcal{L}^+(\mathcal{F}(\mathbf{x}))$; Minimum-variance 2 $\tilde{\theta}' \leftarrow \mathcal{L}^+(\mathcal{F}(\mathbf{x}'))$; unbiased estimator (MVUE) 3 if $(\tilde{\theta} - \tilde{\theta}')^\top I(\tilde{\theta})(\tilde{\theta} - \tilde{\theta}') \ge \frac{2}{m}\chi_r^2(1 - \epsilon)$ then 4 | Does not pass the test for $(\mathbf{x}, \mathbf{x}')$; 5 end 6 Passes the test for $(\mathbf{x}, \mathbf{x}')$;

Advantages

Advantages

- Only needs black-box access to \mathcal{F} .
- Does not require access to users or their personal data.
- Modular.
- Intuitive tunable parameter.
- No content removal.

(Can be combined with other methods!)

What does the audit do?

Main result

Guarantee on how well the audit enforces the regulation.

Theorem (informal). If the filtering algorithm \mathcal{F} passes the audit, then \mathcal{F} is guaranteed to be approximately asymptotically decision-robust.

Alternative statement

If \mathcal{F} does not pass the audit, then the auditor is $(1 - \epsilon)$ -confident that \mathcal{F} is not decision-robust as $m \to \infty$.

Takeaways

- The audit enforces strong similarity between $\mathcal{F}(\mathbf{x})$ and $\mathcal{F}(\mathbf{x}')$.
- ϵ is the allowable false positive rate: increasing ϵ increases strictness.

Why the MVUE?

Insight on MVUE.

Proposition (informal). Faced with a decision between a finite number of options, the decision of the hypothetical user whose belief after viewing content *Z* is given by the MVUE is more sensitive to *Z* than any other user.

Takeaway

To audit without access to users or their decisions, use the MVUE.

The user whose decisions are **most sensitive to the content that they see** is the hypothetical user given by the MVUE.

MVUE allows us to reason about how content affects users without access to users' decisions \rightarrow expensive or unethical to obtain.

Trade-off between regulation & performance

Conditions under which there is no trade-off.

Theorem (informal). When the platform's performance is independent of elements in θ and those elements have sufficient leverage over the Fisher information, then as long as the feed is finite and the available content is expressive enough, then there is no regulation-performance trade-off.

Takeaway

There are conditions under which the platform passes the audit without sacrificing performance.

Content diversity can reduce the cost of regulation

The lower the content diversity of Z and Z', the more easily an auditor can distinguish between how \mathcal{F} behaves under x and x'.

Review

Can we translate a regulatory guideline \rightarrow auditing procedure?

Main contribution: Auditing procedure

Given a regulation in CF form, an auditor can test whether the platform is in compliance.

Thank you!

shcen@mit.edu