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Motivation

Agents wish to be matched. 

Agents in A have preferences over B. 

Agents in B have preferences over A.

Compete for finite number of matches.

Agents learn preferences over time. 

Challenge: How does competition affect the 

agents’ ability to learn and their regret?

BA

2

platform



Examples

marketwatch.com
eng.lyft.com

adpushup.com

Dating Ad exchanges Ride sharing

Individuals compete while learning their preferences from a finite number of interactions.
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Model sequential decision-making 
of learning agents competing for 

resources under uncertainty.
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Game theory + reinforcement learning

Game theory:
• Competing for limited resources.
• Preferences.
• Desirable to reach equilibrium.

Reinforcement learning:
• Learn through interactions. 
• Maximize long-term reward.
• Exploitation vs. exploration.
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What do we want from our system?

Suppose we’re helping the platform to design or evaluate their matching.

Stability: agents are not incentivized to leave the platform. 

Low regret: learning under competition does not come at a high cost.

Fairness: good performance for some is not at the expense of others.

Social welfare: utilitarian performance measure (sum of all agents’ utilities).

We consider these four but not others (e.g., strategy-proofness).
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Today (high-level)

Modeling this problem: Matching & MAB problems. 

Stable matching at every time step à efficient learning for free*! 

Pessimal regret grows !(log &) [Liu, Mania & Jordan ’20].

*Optimal regret can be Ω & + fairness & high SW not guaranteed.

Costs and transfers between agents [Cen & Shah ‘21].

1. Aspect of competition + exogeneous effects.  

2. With structure, can simultaneously guarantee all four criteria. 
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Matching Markets 
with Bandit Learners
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Matching & MAB Problems

How to combine game theory and RL?

Matching + MAB.

“Matching market with bandit learners”

Introduced by Das & Kamenica (2005). 
Important results by Liu, Mania & Jordan (2020).
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Two-sided matching problem

! ≥ #

Known preferences (two-sided)
$!: &" ≻ &! ≻ &# ≻ &$

One-to-one matching ℳ

Stability: No user-provider pair is incentivized to 
defect from ℳ and pair off together. 

$#: &$ ≻ &# but &$: $$ ≻ $#

But do agents know their preferences a priori?

# providers! users
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Multi-armed bandit problem

Agent do not know their own preferences a priori.
Learn from repeated interactions. 

Maximize reward over ) time steps.

At each * ∈ [)]: 
(1) Choose arm .%
(2) Receive noisy reward /&!. 

Minimize regret: ! = Ε ∑!"#$ %%∗ − %%!

Goal: ! = '(log ,).

0 arms

Bandit

exploration vs. 
exploitation

.∗
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Matching market with bandit learners

Centralized matching

At each time step * ∈ [)]:

3% is information state.

Platform’s matching ℳ ⋅ ; 3% .

SubG reward 6% 7,ℳ 7; 3% .

Cost 9(7,ℳ 7; 3% ; 3%).

Transfer <(7,ℳ 7; 3% ; 3%).
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# providers! users

! ≥ #
= = > ∪ @

=( = = ∪ {∅}

> = $", $!, … , $) @ = &", &!, … , &*

True (unknown) preferences E 7", 7! ∈ ℝ. 
Two-sided preferences. No ties à ≻.

3% 7", 7! = Ê% 7", 7! +
2 J!K log *
)%+" 7", 7!

Bandit learners:
Observed payoffs

U ⋅,⋅ ; 3% = 6% (⋅,⋅) − 9 ⋅,⋅ ; 3% + <(⋅,⋅ ; 3%)



Matching market with bandit learners

Matching process:

At * = 0, platform decides on (ℳ, 9, <).These rules are 
made known to all agents. 

At each * ∈ [)]: 

1) Update. Agents update estimates Ê% ⋅,⋅ .

2) Report. Agents report UCB preferences 3% ⋅,⋅ .

3) Match. Platform implements ℳ + agents observe 6%. 

4) Pay and transfer. Agents pay 9 and <.

Agents observe own information only.
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Evaluating performance

Stability: No pair of agents is incentivized to defect.

∄7, 7,: T 7,R 7 < T 7, 7, ∩ T 7,, R 7, < T(7,, 7)

Low (optimal) regret: Competition does not prevent learning.
WX 7;ℳ = Y log ) ∀7 ∈ =

Fairness: Regret is distributed evenly across agents. 

∄7, 7,: WX 7;ℳ = Y log ) ∩ WX 7′;ℳ = \ log )

High social welfare: Utilitarian measure of global performance. 

]% ℳ ≥ max
-∈/

]% R / 2
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Main results
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Stability: Gale-Shapley algorithm

Stability: no user-provider pair incentivized to leave platform. 

Lemma. Running the GS algorithm over UCB payoffs ! ⋅ ,⋅ ; %. at 
every time step & ∈ [)] ensures stability is satisfied. 

For remainder, assume ℳ(⋅ ; %.) is product of GS algorithm.
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No cost, no transfer

) *, *b; - = 0

0 *, *b; - = 0

Proposition 3. Under no costs or transfers, applying the GS algorithm at 
every time step gives: 

1 *;ℳ ≤ 25c6Δdef *
gh!i jkl m
n"#$
! +

i
ioc

.

However, under stability, there exist (9, :) and * such that ;1 *;ℳ = Ω(T).

17



Proportional cost

) *, *b; - = = -(*, *b)

0 *, *b; - = 0

Proposition 4. Under proportional costs and = ∈ [0,1), applying the GS 
algorithm at every time step gives: 

1 *;ℳ ≤ 25c6 1 − = Δdef *
gh!i jkl m
p oq !n"#$

! +
i
ioc

.

However, under stability, there exist (9, :) and * such that ;1 *;ℳ = Ω(T).
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r ∈ [0,1]

Ex. advertisers pay bids, 
users pay in time.



Proportional cost

) *, *b; - = = -(*, *b)

0 *, *b; - = 0

Corollary 6. Under objective Bs:D → ℝ, arg max
t∈u

Bs(K) ∈ L(M(⋅,⋅; Os). 

Proposition 7. Under = = 1, applying the GS algorithm at every time step 
gives 1 *;ℳ ≤ 0. However, under stability, no guarantee on fairness or SW 
and there exist (9, :) and * such that ;1 *;ℳ = Ω(T).
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r ∈ [0,1]

platform can optimize any 
function while preserving 

agent participation



Recap

GS algorithm at every / à stability.

Have seen guarantee on low pessimal regret but not on optimal regret, fairness or SW.

Reassures pessimistic agents à at least reach worst-case performance under a true stable 
matching in log(T) time steps. But optimistic agents may be disappointed. 

Implication? Agents continuing to use the platform ≠ agents participate happily. 

Unhappy due to high regret or unfairness. 

Suggests the platform may suffer if an alternate platform that offers higher agent payoffs arises.

Is it possible to guarantee low regret, fairness, and high SW alongside stability?
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Balanced transfer

! ", "!; % = 0

( ", "!; % = 1
2 % "!, " − %(", "!)

Theorem 9. Under balanced transfers and pairwise-unique . ", "! = "
# /

0
1 ", "! +

1 "!, " , applying the GS algorithm at every time step. 

3 ";ℳ = 53 ";ℳ ≤ Δ$%&∗,) " 8#9 *+0, -./ 0
1123
4 0 + ,

,2# .

Moreover, fairness and high social welfare are guaranteed. 
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Compensating for 
preference imbalance 

(i.e., bargaining)



Balanced transfer

) *, *b; - = 0

0 *, *b; - =
1

2
- *b, * − -(*, *b)

Implications? 

Under balanced transfers, stability à low regret, 
fairness, and high social welfare for free. 

Bargaining elegantly aligns local and global desiderata. 
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Pricing

) Q, R; - = Sp ) Q, R; - = Sc

0 Q, R; - = T(Q; -) 0 R, Q; - = −T(Q; -)

Theorem 11. If :(R,⋅) ≤ U for all R ∈ V, applying the GS algorithm at every 
time step gives:

1 *;ℳ = ;1 *;ℳ ≤ 2Δdef
∗,w * 5c6

gh!i jkl m
n"#$ ! +

i
ioc

.

Moreover, fairness is guaranteed, but high social welfare is not. 
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Ex. prices of goods



Discussion
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Summary

Centralized matching market with bandit learners.

Liu, Mania & Jordan (2020) à stability + low pessimal regret. 

Adding costs & transfers … 

Allows us to model competition and exogeneous effects. 

Makes it possible to simultaneously guarantee stability, low regret, fairness, and high social welfare. 
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Sequential 
decision-making

Learning agents Uncertainty Competition



Key intuition

Four ingredients:

1. GS algorithm at every time step à stability. 

2. Costs & transfers must give unique true stable matching. 

3. Cost & transfer rules do not require knowledge of ..

4. Ensure costs & transfers do not interfere with learning.
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Thanks!
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