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The Influence of Social Media

Social media influences our thoughts & behaviors.

Platforms shape our beliefs by curating what we see:
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How are platforms incentivized to shape our beliefs?




Belief shaping

Common approach: Users have fixed preferences.

In this work, we study ...
How injecting content shapes users’ beliefs over time.
What platforms are incentivized to show users.



Building intuition

Two types of content:
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Platform wants to maximize engagement + revenue.
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Building intuition

Platform wants to maximize engagement + revenue.
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Platform’s mechanism: choose what
injected content each user sees.
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But there are few things out of the platform’s control:
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Today

. Model

A. Belief dynamics
B. Platform objectives

l. Platform’s optimal behavior
A. Closed-form solution
B. Gradient descent algorithm

lll. Implications
A. Network:
B. Sources:
C. Personalization:
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Model



Model

Belief dynamics: X; = aX;_1 + (1 — Oz)ct

Content curation: Cy = BAXt—l -+ (1 — 5)



Xt == CkXt_l + (1 — &)Ct

Platform’s objective Cy = BAX,1 + (1 B)BY
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Xt == OéXt_l -+ (1 — Oé)Ct

Platform’s objective Cy = BAX,1 + (1 B)BY
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Maximize long-term engagement: the closer content is to user
beliefs/preferences, the more engagement it receives (y = patience).



Xt == OéXt_l -+ (1 — Oé)Ct

Platform’s objective Cy = BAX,1 + (1 B)BY
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Maximize long-term engagement: the closer content is to user
beliefs/preferences, the more engagement it receives (y = patience).

Ensure content sources are happy: regularization term that encourages giving
each source some viewership (disappears if § = 0).
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Platform’s objective Cy = BAX,1 + (1 B)BY
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Maximize long-term engagement: the closer content is to user
beliefs/preferences, the more engagement it receives (y = patience).

Ensure content sources are happy: regularization term that encourages giving
each source some viewership (disappears if § = 0).

Prioritize profitable content: use profitable sources more often (default to 4 u).



Xt == OéXt_l + (1 — Oé)Ct

Platform’s objective Cy = BAX,1 + (1 B)BY
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Maximize long-term engagement: the closer content is to user
beliefs/preferences, the more engagement it receives (y = patience).

Ensure content sources are happy: regularization term that encourages giving
each source some viewership (disappears if § = 0).

Prioritize profitable content: use profitable sources more often (default to 4 u).

Prioritize certain types engagement: e.g., due to uncertainty in the platform’s
knowledge of users’ beliefs along certain dimensions (default to 1;4).



Xt == OéXt_l -+ (1 — ()C)Ct

Platform’s objective Cy = BAX,1 + (1 B)BY
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Maximize long-term engagement: the closer content is to user
beliefs/preferences, the more engagement it receives (y = patience).



Optimal platform behavior



Closed-form solution

Suppose we consider the simple engagement objective:
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Theorem 1. If entries in B can take any real value,
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Algorithm

Can solve this problem using projected gradient descent.
Initialize row-stochastic B,
Take gradient step (nice closed-form expression).

Project onto probability simplex.
Stop if B® and B¢~ are close; otherwise, repeat 2-4.

> W=

Guaranteed to converge to global minimum!
Main proof step is to show that Hessian is PSD.



Simulations



Reminder

Platform wants to maximize engagement + revenue.
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Platform’s mechanism: choose what
injected content each user sees.

Exogeneous factors:
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How does network affect user beliefs?

beliefs with injected content
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Intuition: Content sources = stubborn agents. Sparse network + stubborn agents
> less mixing. Platform incentivized to cater rather than drive consensus.



How do extreme sources affect beliefs?

user beliefs with less extreme sources user beliefs with moderate sources user beliefs with more extreme sources
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Intuition: Extreme sources 2 permit extreme beliefs. Not always b/c platform
drives to extremes - can cater to extreme users, who pull neighbors extreme.



What happens if the platform is patient?
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Intuition: a patient platform induces lower consensus = makes extreme users
slightly more moderate, then uses them like stubborn agents



Recommendations

We study how the platform is incentivized to connect sources to users.

This framework can help platforms design their editorial policies.

Findings: interesting interplay between personalization and consensus.

Content sources = stubborn agents = disincentivize consensus, especially in sparse networks.

Suggests serendipitous connections can better drive consensus, when desirable.

Extreme sources permit extreme beliefs not because drive extreme users more extreme, but
because can cater to extreme users and then allow them to take over.

Suggests that have to do more than not show extreme content to moderate users.

Polarization cannot be solved with patience. In fact, patience can favor extreme beliefs.

Suggests that platforms often rely on extreme platforms a bit too much.



Thank you!



