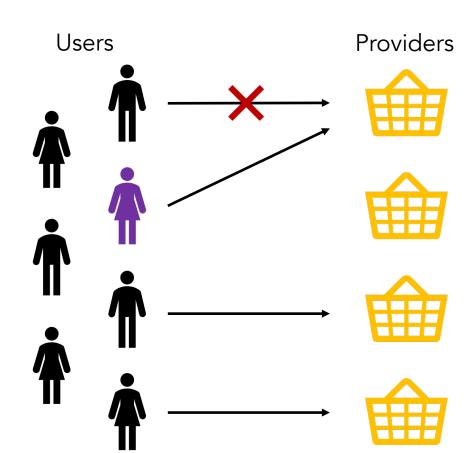
Regret, stability & fairness in matching markets with bandit learners

Sarah Cen and Devavrat Shah Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology.

Making informed decisions


Making an informed decision **requires knowledge** about options. Ex. Choosing a career or housing.

> Learn thru trial-and-error but not always possible **under competition**.

How does competition affect an individual's ability to make informed decisions and ultimately their long-term outcomes?

Learning under competition

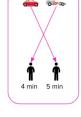
How to model? Combine game theory & RL: Matching + MAB.

Users have **preferences** over providers and vice versa.

Agents **compete** for matches.

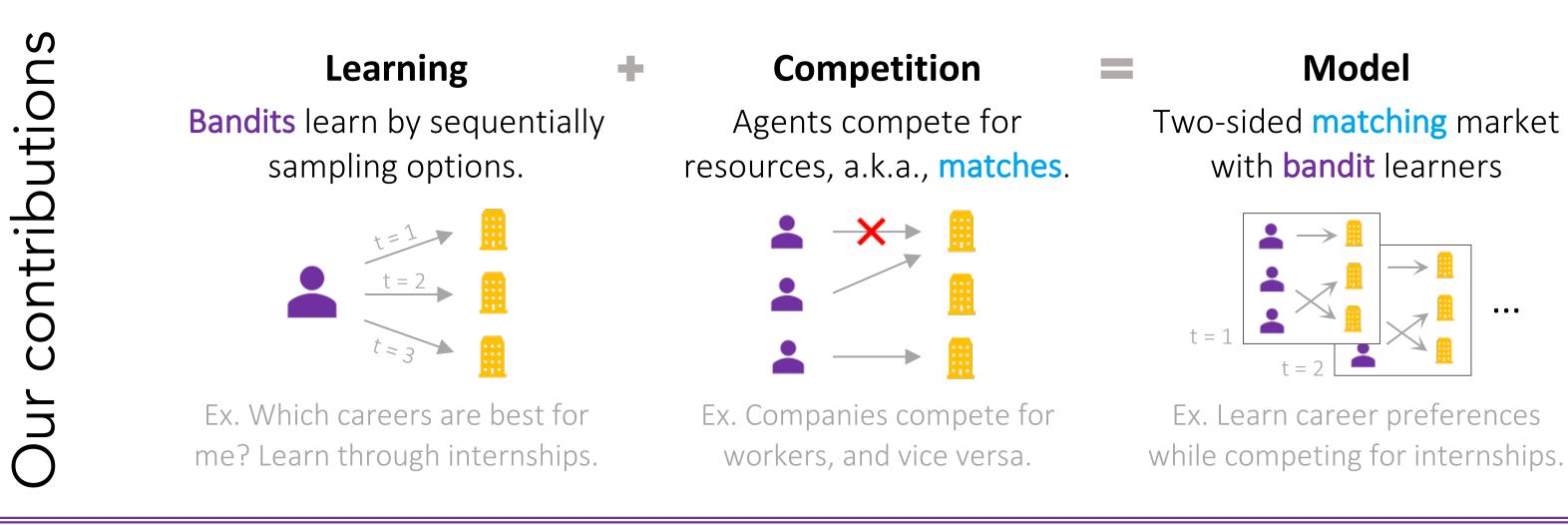
Preferences are unknown.


But agents learn them over time.


Challenge: How well do agents learn under competition?

Ad exchanges

adpushup.com


eng.lyft.com

Game theory:

- Competition.
- Preferences.
- Equilibrium.

Reinforcement learning:

- Learn thru interactions.
- Maximize reward.
- Explore vs. exploit.

Problem setup

Two-sided unknown preferences $\mu(a_1, a_2) \in \mathbb{R}$.

Centralized matching:

At t = 0, platform decides on $(\mathcal{M}, \mathcal{C}, \mathcal{T}) \rightarrow$ made known to all \mathcal{A} .

At each $t \in [T]$:

- 1. Update. Agents update estimates $\hat{\mu}_t$.
- 2. Report. Agents report UCB preferences v_t
- **3.** Match. Platform matches according to $\mathcal{M}(\cdot; v_t)$. Every agent *a* matched to a' receives sub-Gaussian rewards $X_t(a, a')$.
- 4. Pay and transfer. Every agent a matched to a' pays cost $\mathcal{C}(a, a'; v_t)$ and receives transfer $\mathcal{T}(a, a'; v_t)$.

Objectives:

Stability: No pair of agents is incentivized to defect.

Low (optimal) regret: Competition does not prevent learning.

Fairness: Regret is distributed evenly across agents.

High social welfare: Utilitarian measure of global performance.

Main result

With costs and transfers, can simultaneously guarantee:

- 1. Stability ← good for platform
- 2. Low regret ← good for agents
- 3. Fairness ← good for society
- 4. High social welfare

Main results

Recent impossibility result [Liu et al. '20]:

Cannot simultaneously guarantee stable matching alongside low regret, fairness, and high social welfare.

We incorporate **costs and transfers** [Cen & Shah '22].

- 1. Model competition + exogeneous effects.
- 2. Can guarantee stability, low regret, fairness, & high SW.

Main theorems. Under mild conditions & balanced transfers, applying the Gale-Shapley algorithm at every time step ensures stability, fairness, and high social welfare. Moreover,

$$\underline{R}(a;\mathcal{M}) = \overline{R}(a;\mathcal{M}) = O\left(N^2 L\left(\frac{8\sigma^2 \alpha \log T}{\left(\Delta_{\min}^{\rho}\right)^2} + \frac{\alpha}{\alpha - 2}\right)\right)$$

Moreover, there exists a pricing rule that simultaneously guarantees stability, fairness, and low regret.

Four proof ingredients:

LIDS

LABORATORY FOR

DECISION SYSTEMS

INFORMATION &

- 1. GS algorithm at every time step \rightarrow stability.
- 2. Costs & transfers must give **unique** true stable matching.

- 3. Ensure costs & transfers **do not interfere with learning**.
- 4. Cost & transfer rules do not require knowledge of μ .